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En las últimas décadas la sociedad industrializada hace un 
uso extenso de los sistemas automatizados. Tanto en la vida 
cotidiana como en la industria se destacan sistemas de control 
que regulan magnitudes de temperatura, presión, flujo, segu-
ridad, electrónica y la robótica en lo concerniente al desarro-
llo de microcontroladores y los sistemas inalámbricos; hoy en 
día todo es controlado, con el objeto de optimizar y mejorar el 
desempeño de los procesos dentro de los sistemas automatiza-
dos manteniéndolos dentro de parámetros preestablecidos en 
los requerimientos del cliente (Sociedad Industrial). Por ello es 
necesario un adecuado estudio de los sistemas a controlar, así 
como también un buen nivel de conocimientos referente al aná-
lisis y diseño de los Sistemas de Control. 

El notable desarrollo de la informática y la electrónica, han 
permitido la incorporación de nuevas técnicas y procedimien-
tos que para un determinado proceso, resuelven problemas de 
teoría clásica de control, por su puesto, basándose en los méto-
dos clásicos de diseño implantados a mediados del siglo pasado; 
por ello es primordial el estudio preeliminar de la teoría clásica 
de control de sistemas, a partir de la relación de entrada-salida.

Por esta causa la ingeniería de sistemas de control forma 
parte del plan de estudios de numerosas escuelas de ingeniería, 
así como en facultades de ciencias. 

En la actualidad existen numerosas obras de prestigiosos 
autores que brindan al estudiante y al profesional un medio 

Introducción
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adecuado para la comprensión de las técnicas clásicas de con-
trol de los sistemas. Sin embargo, tanto profesores como estu-
diantes de estas asignaturas han demandado la falta de textos 
que se adapten de manera organizada a los programas vigentes 
en diferentes universidades, de ello no se escapan los cursos 
de sistemas de control clásico (teoría de control clásico) que 
imparto, lo cual requiero de la recomendación de varias obras 
para abordar el contenido programático de dicha asignatura. 
Aunado a esto, los problemas de traducción que presentan mu-
chas de estas obras hacen que dificulten la comprensión de los 
contenidos de la materia.

Este libro está escrito de acuerdo al contenido usual de un 
primer curso de sistemas de control (Teoría Clásica de Control 
y sus fundamentos); los capítulos se han estructurado adaptán-
dolos al desarrollo del mencionado curso, desarrollándose en 
ellos los conceptos fundamentales para el análisis y modelado 
de control de sistemas.

La metodología aplicada en el análisis y diseño de sistemas 
de control es producto de la experiencia cosechada en el ámbito 
industrial en los Departamentos de Proyectos de las empresas 
donde presté mis servicios, aunado a ello, lo que por muchos 
años he compartido con mis alumnos en los proyectos de grado, 
como asesor académico, lo que me ha dado resultados exitosos, 
pero no puedo dejar de expresar la influencia de la metodología 
aplicada por Clint Smith en su libro Diseño de redes. 

El libro se ha estructurado en siete capítulos, el primer ca-
pítulo se dedica a la introducción de los sistemas de control; el 
segundo capítulo incluye las bases matemáticas fundamentales 
(Transformada de Laplace y su aplicación); el tercer capítulo se 
estudia la función de transferencia basado en la teoría de dia-
gramas de bloque, gráficos de flujo de señal y las aplicaciones a 
las ecuaciones diferenciales o sistemas de ecuaciones diferen-
ciales, también se incorpora la construcción de las ecuaciones 
de estado (Variable de Estado), partiendo de una o de un siste-
ma de ecuaciones diferenciales.
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El cuarto capítulo estudia el modelado de los sistemas físi-
cos, específicamente eléctricos, mecánicos y electromecánicos 
donde se destaca su representación mediante variables de es-
tado y los métodos de solución para obtener las variables de es-
tado, incorporando la los conceptos de observabilidad y contro-
labilidad de los sistemas. El quinto capítulo realiza un análisis 
detallado de las respuestas en el tiempo, los errores de estado 
permanente y los controladores en los sistemas. El capítulo seis 
trata de los métodos de estudio de la estabilidad de los sistemas 
de control. Para finalizar, el capítulo siete desarrolla la técnica 
del lugar geométrico de raíces, herramienta de gran utilidad 
para el análisis y diseño de sistemas de control retroalimenta-
dos.

La elaboración de este libro esta orientado a los cursos de 
sistemas de control clásico y espero que sea de gran utilidad a 
estudiantes y profesores de las cátedras en el proceso de apren-
dizaje de la asignatura. También estoy abierto a la crítica cons-
tructiva para la mejora de esta obra.

Alí José Carrillo Paz
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Introducción
El control automático ha desempeñado un papel muy impor-

tante en el avance de la ingeniería y la ciencia. Además de su 
aporte en la construcción de los vehículos espaciales, misiles 
teledirigidos y la robótica. Los avances en la teoría y la prác-
tica del control automático ofrecen los fundamentos necesa-
rios para obtener un comportamiento óptimo de los sistemas 
dinámicos, mejorar u optimizar los procesos con el objeto de 
obtener mejores resultados y simplificar el trabajo de muchas 
operaciones manuales rutinarias, así como otras actividades, 
la ingeniería trata de comprender y controlar las fuerzas de la 
naturaleza en beneficio de la humanidad. La Ingeniería de Con-
trol se basa en los fundamentos de la teoría de realimentación y 
análisis de sistemas lineales, integrando la teoría de redes y de 
comunicación; por esta razón, la teoría de control no está limi-
tada a un área específica de la ingeniería, sino que es aplicable a 
las ingenierías aeronáutica, civil, química, mecánica y eléctrica, 
por tanto, analiza la dinámica de todo tipo de sistemas e incre-
menta el control de los mismos.

Introducción a los sistemas de control
La pregunta que nos hacemos comúnmente al iniciar el estu-

dio de la teoría de control es la siguiente: ¿Qué es un sistema de 
control? Existen muchas definiciones, sin embargo, el concepto 
que usaremos está basado en los objetivos que se persiguen al 

CAPÍTULO 1

INTRODUCCIÓN A LOS SISTEMAS DE 
CONTROL
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tratar de controlar un sistema, para que opere bajo parámetros 
definidos previamente. Definimos un sistema de control como el 
conjunto de elementos que funcionan de manera concatenada 
para proporcionar una salida o respuesta deseada.

Los componentes básicos de un sistema de control pueden 
ser descritos por:

a)	 Objetivos de control
b)	 Componentes del sistema de control
c)	 Resultados o salida

La relación básica entre estos tres componentes se muestra 
en la Figura n° 1 los objetivos de control pueden ser identifica-
dos como entradas o señales entrantes, los resultados son con-
siderados las salidas o las variables controladas; en general, el 
objetivo del sistema de control es controlar la salida de manera 
ordenada actuando los elementos de control sobre la señal de 
entrada.

Ejemplos de sistemas de control

Sistema de control de velocidad
En el sistema de control de velocidad mostrado en la Figura 

n° 2, desarrollado por James Watt, la cantidad de combustible 
que admite la máquina se ajusta de acuerdo con la diferencia de 
velocidad establecida como parámetro de operación (Objetivo 
de Control) y la velocidad real de la máquina. El funcionamiento 
se describe así: el regulador de velocidad se ajusta de manera 
que al alcanzar la velocidad deseada, no fluya aceite a presión a 
ningún lado del cilindro de potencia; si la velocidad real cae por 
debajo de la velocidad deseada debido a una perturbación, la 
disminución de la fuerza centrífuga del regulador de velocidad 
hace que la válvula de control se mueva hacia abajo, aportando 

Objetivos ResultadosSistema de 
control

Fig. 1. Componentes básicos de un sistema de control.
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más combustible y la velocidad del motor aumenta hasta alcan-
zar el valor deseado, así mismo, si la velocidad del motor au-
menta por encima del valor deseado, el incremento de la fuerza 
centrífuga hace que la válvula de control se mueva hacia arriba, 
esto disminuye la entrega de combustible y la velocidad del mo-
tor disminuye hasta alcanzar el valor deseado. En este sistema 
la variable controlada (salida) es la velocidad del motor y el sis-
tema de control es la máquina, y la entrada es el combustible 
(gasolina).					   
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Sistemas de control de temperatura
En la Figura n° 3 se muestra la arquitectura del sistema de 

control de temperatura de un horno eléctrico. La temperatu-
ra se mide con un termómetro, el cual es un dispositivo ana-
lógico, esta medición se convierte en datos digitales mediante 
un convertidor analógico-digital (convertidor A/D), este dato 
digital se introduce en el controlador a través de una interfaz, 
se compara con la temperatura programada o deseada y si hay 
una diferencia, el controlador (computador) envía una señal al 
calefactor a través de una interfaz, al amplificador y relé para 
que la temperatura disminuya o aumente según sea el caso, a la 
temperatura deseada. La salida del sistema es la temperatura, 
el controlador es el computador y la entrada es la señal del ter-
mómetro.	

Sistema de control de nivel
Durante las horas de sol en el día la celda solar produce elec-

tricidad haciendo que opere el motor, éste hace que la bomba 
succione el agua desde el pozo para llevarla hasta el reservorio 
ubicado en la montaña y durante las primeras horas de la ma-
ñana, el agua es entregada por medio de un sistema de irriga-
ción a la comunidad (véase la Figura n° 4).

Conceptos básicos de sistemas de control 
Planta: se designa como planta a cualquier objeto físico que 

ha de ser controlado (como horno, reactor químico o un vehícu-

Fig. 3. Sistema de control de temperatura.

Termómetro

Horno 
eléctrico

Calefactor
Relé

Conversor
A/D Interfaz

Entrada 
programada

Interfaz
Amplifica-

dor
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lo espacial). En forma más general, la planta es la instalación de 
un sistema destinada a realizar un proceso determinado.

Proceso: es una operación progresivamente continua, ca-
racterizada por una serie de cambios graduales con tendencia 
a producir un resultado final de un objetivo determinado. En 
adelante, se entenderá por proceso cualquier operación que se 
vaya a controlar.

Sistema: es el conjunto de elementos interconectados y or-
ganizados en iteración dinámica operando con un objetivo de-
terminado.

Entrada: se entiende como entrada o estímulo una señal de 
excitación que se aplica a un sistema de control. Las hay de re-
ferencia y de perturbación. 

La referencia es aquella que se aplica a voluntad del usuario 
con el fin de encontrar una respuesta deseada. 

La perturbación es una señal de entrada no deseada y no 
previsible que afecta adversamente el valor de la salida del sis-
tema, éstas pueden tener origen interno (generada por la mis-
ma planta) o externo.

Salida: se define como la respuesta de un sistema a un estí-
mulo dado (variable controlada).

Control: desde el punto de vista de ingeniería se define 
como la regulación en forma predeterminada de la energía su-

Fig. 4. Sistema de seguimiento solar para el suministro de agua.

 Motor

Sol
Electricidad 
generada

Nivel de agua en el pozo

Montaña

Irrigación

Válvula de 
descarga

Tanque

Celda solarBomba de 
succión
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ministrada al sistema, buscando un comportamiento deseado 
del mismo.

Tipos de sistemas de control
Los tipos de sistemas de control más comunes son los sis-

temas de control a lazo abierto y los sistemas de control a lazo 
cerrado.

Sistema de control a lazo abierto: es aquel sistema de con-
trol en el que la salida no es afectada por la señal de entrada. La 
salida no se realimenta para compararla con la entrada. 

Los elementos de un sistema a lazo abierto usualmente es-
tán divididos en dos partes, el controlador y el proceso contro-
lado, véase la Figura n° 5. 

Un ejemplo práctico es una lavadora automática; el remojo, 
el centrifugado y el lavado operan con una base de tiempo. La 
máquina no mide la señal de salida, la limpieza de la ropa. Otro 
ejemplo es el sistema de control de tráfico vehicular, éste está 
basado para operar sobre un tiempo fijado, pero no mide su 
respuesta que es el tráfico; sin embargo, los sistemas de control 
de tráfico modernos, computarizados, pueden considerarse de 
lazo cerrado: se ajustan de acuerdo al flujo de tráfico.

Sistema de control a lazo cerrado (control realimenta-
do): en el sistema de control a lazo cerrado, el controlador se 
alimenta de la señal de error de desempeño, la cual representa 
la diferencia entre la señal de entrada y la señal de realimenta-
ción con el fin de reducir el error y llevar la salida del sistema 
a un valor deseado. El término lazo cerrado siempre indica una 
acción de control realimentado para reducir el error del siste-
ma. Véase la Figura n° 6. 

Una de las ventajas importantes que presenta este tipo de 
sistema de control es que se hace insensible a las perturbacio-

Fig. 5. Elementos de sistema de control a lazo abierto.

Controlador

Entrada de 
referencia

Variable 
controlada

Entrada de 
entrada

Proceso
Controlador
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nes y mantiene su exactitud; de la comparación de la señal rea-
limentada y la señal de entrada resulta la señal de error, la que 
es minimizada con la acción de control. Sus principios son apli-
cables a sistemas que presentan perturbaciones o variaciones 
imprevisibles en los componentes del sistema.

Servomecanismo: es un sistema de control mecánico rea-
limentado (lazo cerrado) que involucra partes en movimiento 
accionadas por un motor y cuya función es controlar posición, 
velocidad o aceleración mecánica.

Análisis de la realimentación
La realimentación simple. En un sistema realimentado, se 

caracteriza por el hecho de que la variable controlada sea tem-
peratura, la velocidad o presión, entre otras variables, son me-
didas por un sensor y esta información medida es regresada al 
controlador que influye sobre la variable controlada. El princi-
pio es fácilmente ilustrado en un sistema de calefacción case-
ro que no son muy comunes en el trópico, controlado por un 
termostato. Los componentes de este sistema y sus conexiones 
son ilustrados en la Figura n° 7.1, la cual identifica la mayor par-
te del sistema y muestra la dirección del flujo de información de 
un componente a otro. 

Se realiza muy fácilmente un análisis cualitativo de la opera-
ción de este sistema. Supóngase que la temperatura de la casa 
donde esta ubicado el termostato y la temperatura exterior está 
muy por debajo de la temperatura deseada, cuando se aplica la 

Fig. 6. Sistema de control a lazo cerrado.

Controlador

Elemento de
Medición

Entrada de 
referencia

Variable 
controlada

Entrada de 
entrada Proceso

Controlador
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energía, el termostato estará en activo, transmitiendo energía a 
la válvula gas del horno o caldera que se abrirá, haciendo que 
se enciendan y que funcione el ventilador para que entre calor 
a la casa. Si el calentador (horno o caldera) está bien diseñado, 
la cantidad de calor en la entrada será mucho mayor que las 
perdidas de calor y la temperatura del cuarto aumentará hasta 
exceder el punto de operación del termostato en una pequeña 
cantidad. En este momento se apagará la fuente de calor y la 
temperatura del cuarto tenderá a tomar el valor externo. Cuan-
do ésta baja un grado o más por debajo del punto de operación 
del termostato, éste se activa de nuevo y el ciclo se repite man-
teniendo el cuarto dentro de un rango de temperatura deseada.

 A partir de este ejemplo se pueden identificar los compo-
nentes genéricos de un sistema de control realimentado ele-
mental, el cual se ilustra en la Figura n° 7.1.

Fig. 7. Sistema de control de temperatura de horno casero.

Válvula 
de Gas Horno CasaTermostato

Pérdida 
de calor Temperatura 

del cuarto

Fig. 7.1.  Diagrama de bloque de un sistema de control realimentado simple.
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Actuador PlantaContro-

lador
Filtro de 
entrada

Sensor



 Alí José Carrillo Paz 27

El componente central es el proceso o planta, cuya variable 
será controlada. En nuestro ejemplo ilustrativo, la planta es el 
cuarto. La señal de salida es la temperatura en el cuarto y la 
señal de perturbación es el flujo de calor del cuarto debido a 
la conducción a través de las paredes a la temperatura exterior 
más baja (El flujo de calor depende del viento y las puertas 
abiertas, etc.). El actuador es el dispositivo que puede influir en 
el proceso, en nuestro caso es la caldera a gas.

En realidad, el horno o caldera tiene una luz piloto, la cual 
implica usualmente retroalimentación, una válvula de gas, que 
también implica retroalimentación y un ventilador que con va-
rios controles para el ciclo de operación de encendido y apagado 
sin realimentación basado en el hecho de la operación eficiente 
del sistema. Estos detalles se mencionan para ilustrar que mu-
chos sistemas realimentados contienen componentes que for-
man ellos mismos otros sistemas realimentados. El componen-
te que designamos termostato en la Figura n° 7 se ha dividido 
en tres partes en la Figura n° 7.1, son la referencia, sensores de 
salida y comparador (símbolo de adición). Para propósitos de 
control, hay que medir la variable de salida (temperatura del 
cuarto), medir la variable de referencia (temperatura deseada) 
y compararlas.

El valor de la realimentación puede ser demostrada fácil-
mente por un análisis cuantitativo de un modelo simplificado 
de un sistema, el control de la velocidad crucero de un auto-
móvil mostrado en la Figura n° 7.3. El estudio de esta situación 
analíticamente necesita un modelo matemático de nuestro sis-
tema en forma de un conjunto de relaciones cuantitativas tam-
bién de variables.

En este ejemplo ignoramos la respuesta dinámica del auto-
móvil y solo consideramos el comportamiento. Además, asu-
mimos el rango de velocidad que será usado por el sistema, 
podemos considerarlo una relación lineal, luego de medir la 
velocidad del vehículo en un camino nivelado a 65 km/h, en-
contramos que el cambio de un grado en el ángulo de apertura 
(nuestra variable de control) causa un cambio de 10 km/h en la 
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velocidad. Las observaciones realizadas mientras manejaba en 
la subida y bajada de una montaña, éstas arrojaron que cuando 
el grado de inclinación cambia en 1%, medimos un cambio de 
velocidad de 5 km/h. El medidor de velocidad operó con una 
exactitud de una fracción 1 km/h el cual era considerado muy 
exacto.
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Para concluir, quiero aclarar que algunos autores utilizan la 
palabra retroalimentado y algunos otros la palabra realimenta-
do, como esta palabra viene de la traducción en inglés feedback, 
en ambos casos significan lo mismo.
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Introducción
Uno de los aspectos más importantes del análisis y diseño 

de los sistemas de control es su modelado, para ello es necesa-
rio el uso de los fundamentos matemáticos para el desarrollo 
de herramientas que faciliten el análisis y la solución de pro-
blemas en la teoría clásica de sistemas de control, la razón de 
esta afirmación estriba en el hecho de que el comportamiento 
de los sistemas físicos se describen mediante ecuaciones dife-
renciales ordinarias, lo que conlleva al estudio detallado y pro-
fundo de las mismas para lograr un basamento matemático que 
garantice un nivel académico adecuado en los tópicos: teoría 
de variable compleja, la diferencial, ecuaciones diferenciales, la 
transformada de Laplace y la transformada z. Así mismo, en la 
actualidad la teoría de control moderno requiere considerable-
mente de un nivel matemático más intensivo, tales como la teo-
ría de matrices, teoría de conjuntos, álgebra lineal, transforma-
ciones lineales, programación, teoría de probabilidades y otros 
tópicos de matemática avanzada.

En este capítulo se presenta la teoría y aplicaciones de la 
transformada de la Laplace y recomendamos la revisión de los 
tópicos sobre variables complejas, ecuaciones diferenciales y el 
álgebra matricial. Estas asignaturas normalmente forman parte 
del ciclo básico de ingeniería con énfasis en las aplicaciones a 
los sistemas por lo que abordar estos temas en este texto haría 
muy extensa la obra sobre contenidos ya incluidos en el diseño 

CAPÍTULO 2

FUNDAMENTOS MATEMÁTICOS
La Transformada de Laplace
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curricular de los estudios de ingeniería.
Los objetivos de este capítulo son:

1.	 Introducir los fundamentos de la transformada de Laplace.
2.	 Desarrollar aplicaciones de la transformada de Laplace 

para resolver ecuaciones diferenciales ordinarias.
3.	 Introducir el concepto de función de transferencia.
4.	 Usar la herramienta Matlab para la solución de problemas.

La Transformada de Laplace
La transformada de la Laplace es una de las herramientas 

matemáticas más usadas para resolver ecuaciones diferencia-
les. En comparación con los métodos clásicos de solución de 
ecuaciones diferenciales, el método de Laplace se basa en:
1.	 Las soluciones, tanto homogénea como particular de las 

ecuaciones diferenciales, se obtienen en una sola operación 
matemática.

2.	 La transformada de Laplace convierte la ecuación diferencial 
en ecuaciones algebraicas con el operador s, por lo que es 
posible manipular las mismas mediante las reglas básicas 
del álgebra para obtener la solución en el dominio de s. La 
solución final se obtiene tomando la transformada inversa 
de Laplace. 

Definición de la transformada de Laplace
Sea f�t� una función continua en �0,∞�. La transformada de 

Laplace de f�t� es la función f�s� definida mediante la integral:

f�s� = ∫ f�t�e−stdt
∞

0  				                
(1)

El dominio de F�s� está formado por todos los valores de s 
para los cuales la integral en (1) existe, la transformada de la 
Laplace se denota L �f�t�� o f�s�. Donde la variable s = α + jω se 
define en el plano complejo.

Ejemplo 1
Sea la función f�t� definida por:
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μ�t� = �

1   t ≥ 0
0 para otro valor

 Usando la definición de la transformada de Laplace para cal-
cular:

f�s� = 
∞

0
∫

 
�1�e−stdt = − 1s  

e−st 
∞

0
= 0 − −1

s  
= 1s ,                       (2)

		             s ˃ 0
Para valores de s < 0, la integral diverge y por tanto el domi-

nio de F(s) es para s > 0.

Ejemplo 2
Determine la transformada de Laplace de f �t� = eat, t ≥ 0, 

donde a > 0 es una constante.

f�s� = 
∞

0
∫ �eat�e−stdt = 

∞

0
∫

 
e−�s−a�tdt  		                         (3)

	      = − 1
s − a 

e−�s−a�t 
∞

0

 1
s − a

,  s ˃ a

De este resultado podemos obtener las trasformadas de las 
siguientes funciones:

a) f�t� = ejat , 	  b) f�t� = e−jat 

La transformada de la función ejat usando el resultado en (3) 
obtenemos:

F�s� =
 

1
s − ja 	 y para la función e−jat usando el mismo 

t

µ(t)

1

Fig. 8. Gráfica de la función escalón unitario.

1

t

μ�t�
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resultado, obtenemos: 

F�s� =
 

1
s + ja, 	 para s > |ja| se obtienen los pares de 

transformadas siguientes: 

ejat ↔     1
s − ja  					                

(4)

e₋jat ↔     1
s + ja 					                 

(5)

Si f�t� ↔ F�s�, 	 operador matemático doble implicación 
↔, significa que va en dos sentidos, el primero indica que: 

L�f�t�� = F�s�, 	 de igual manera el segundo indica 

L−1 �F�s�� = f�t�, 	 siendo 

L−1 �F�s�� 	         la transformada inversa de Laplace de F�s�.

Propiedades de la transformada de Laplace

a)	 Propiedad de linealidad

Teorema 1
Dada dos funciones f�t�, g�t�, se requiere determinar la 

transformada de la suma de estas funciones, la propiedad de li-
nealidad de la transformada define a la trasformada de la suma 
de funciones como la suma de sus transformadas, ilustrada de 
la forma siguiente:

 L�af�t� + bg�t�� = L�af�t�� + L �bg�t�� 		              (6)

		                 = bF�s� + bG�s�

Ejemplo 3
Determine la transformada de la función f�t� = sen�at� para 

t ≥ 0, donde a es una constante arbitraria.
Podemos comenzar estableciendo la relación de la función 

seno con las funciones exponenciales, usando la identidad de 



35Alí José Carrillo Paz

Euler tenemos que sen�bt� = 
ejbt − e−jbt

2j . Este resultado facilita el 

cálculo de la trasformada de la función seno, debido que la tras-
formada de las funciones exponenciales ya son conocidas usan-
do (4) y (5), por lo cual es muy fácil hallar L �sen�at�� mediante 
la aplicación de la propiedad de linealidad de la transformada 
equivale a obtener: 

L�                   �:ejat − e−jat

2j

f�t� =        �ejbt − e−jbt � ↔ F�s� =        �            −            �         1
s − bj

1
s + bj

1
2j

1
2j

 =         �                          � =                    = 1
2j

s + bj − s + bj
s2 + b2

2bj
2�s2 + b2�

b
s2 + b2

y podemos concluir que:

sen�bt� ↔  b
s2 + b2                                    		              (7)

De manera análoga se puede determinar la transformada de 
la función f�t� = cos�b�, la cual se dejará como ejercicio al lector, 
donde obtendrá el siguiente resultado:

cos�bt� ↔ s
s2 + b2          				                (8)

Una función f�t� es de orden exponencial α si existen cons-
tantes positivas T y M tales que:

�f�t�� ≤ Meαt 					                (9)

Teorema 2 
SI f�t� es continua por partes en �0,∞� y de orden exponen-

cial α, entonces L �f�t�� = F�s� existe para s > α.

Demostración:
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Separamos primero la integral ∫    f�t�e−stdt∞
0 en dos partes.

∫  f�t�e−stdt + ∫   f�t�e−stdt
T

0

∞

0 			            
(10)

y como t ≥ T para s > α entonces se puede aplicar la relación:

�f�t�e−st� = e−st� f�t�� ≤ Me−�s−αt�t,

y se obtiene:

∫   Me−�s−α�t dt = M ∫   e−�s−α�t dt = Me−�s−α�t                       < ∞
∞

T

∞

T

1
s − α

Como �f �t�e−st� ≤ Me−�s−α�t para t ≥ T, la integral impropia de la 
función mayor converge para s > α; el criterio de comparación 
muestra que la integral

∫   f�t�e−st dt 
∞

T
converge para s > α. Por último, como las dos integrales en (9) 
existen, la transformada de Laplace L�f�t�� = F�s� existe para s 
> α.  

b)	 Propiedad de traslación en s

Teorema 3
 Si la transformada de Laplace �f�t�� = F�s� existe para s > a 

entonces:

�eat f�t�� = ∫ eat f�t�e−dt dt  = f�s −a� para s ˃ a
∞

0

Demostración:
De la definición se sabe que:

�eat f�t�� = ∫   eat f�t�e−st dt = ∫  f �t�e−�s −a�tdt = F�s −a�
∞

0

∞

0

la cual es válida para s > a.

Ejemplo 4
Determinar la transformada de Laplace de f�t� = e−at sen�bt�.

En el Ejemplo 3 vimos que �sen�bt�� =  b
s2 + b2, así que por
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la propiedad de traslación de F(s), tenemos que:

�eat sen�bt�� = b
�s − a�2+b2 			            

(11)

c)	 Transformada de Laplace de la derivada

Teorema 4   
Sea f�t� una función continua diferenciable en el intervalo 

�0, ∞�; entonces la transformada de Laplace de la función deri-
vada de f�t� viene dada por:

�f '�t�� = sF�s� − f�0� 				             (12)

Podemos usar inducción para extender el teorema a deriva-
das de orden superior:

�f ''�t�� = s2F�s� − sf�0� − f '�0� 			            (13)

y en general obtenemos el resultado:

�f n�f�� = snF�s� − s n−1 f�0� − s n−2 f '�0� 

        − s n−3 f ''�0�−......−f n−1�0�		           (14)

Esta propiedad es muy útil para encontrar la solución de las 
ecuaciones diferenciales ordinarias, lo cual abordaremos más 
adelante cuando estudiemos las aplicaciones de la transforma-
da de Laplace, por ahora la usaremos para encontrar las trans-
formadas de funciones conocidas.

Ejemplo 5
Sea la función f�t� = sen �bt�. Si f '�t� = bcos �bt� y f�0� = 0, 

halle la transformada de la función f�t� = cos bt.
Sustituyendo en la ecuación (12) obtenemos:

�b cos bt� = sF�s�− 0

Por tanto,

�b cos bt� = s b
s2 + b2
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y en consecuencia

�cos bt� = s
s2 + b2

d)	 Propiedad de multiplicación por t n

Teorema 5  
Sea una función f�t� seccionalmente continua y diferencia-

ble en el intervalo �0, ∞�; entonces su trasformada de Laplace 
es también diferenciable y por lo tanto,

�t n f�t�� = �−1�n dnF�s�
dsn 				            

(15)    

La demostración de este teorema es muy sencilla, bastará 
con derivar la función F(s) usando la definición de la transfor-
mada de Laplace e intercambiando el orden de integración y 
derivación.

Ejemplo 6

Sea f�t� = tμ�t� donde μ�t� = �
1  t ≥ 0
0  t < 0

 

La transformada de esta función la calculamos en el Ejemplo 
1, y es:

 μ�t� = 1s ; 

ahora bien, para calcular la transformada de la función f�t�, de-
bemos aplicar la propiedad de multiplicación por t, esto implica 
que:

 1
s2

d �    �1
s

F�s� = −               =
ds

, 

y de acuerdo con este resultado podemos concluir que la trans-
formada de:

f�t� = t para t ≥ 0 es f�s� = 1
s2

. 
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Ejemplo 7
Podemos calcular las transformadas de f�t� = t2 y x�t� = t3, 

para t ≥ 0, usando la propiedad de multiplicación por t, y en-
contramos que: 

2
s3F�s� = �−1�2                  =

d2 �    �1
s

ds2
    y    6

s4X�s� = �−1�2                  =

d3 �    �1
s

ds3

Si ahora hacemos f�t� = tn para t ≥ 0, se obtiene, por lo cual 
concluimos que:

           
n!

sn+1tn ↔ �−1�n                   =

dn �    �1
s

ds 	          		            (16)

e)	 Propiedad de desplazamiento en el tiempo

Teorema 6 
Sea f�t�una función seccionalmente continua y existe su 

transformada. Entonces la transformada de f�t − τ� para t ≥ τ 
está dada por:

 �f�t − τ�� = F�s�e−sτ 				             (17)

Demostración: 

Por definición.

�f�t − τ�� = ∫  f�t − τ�e−sτdt 
∞

0

Si hacemos u = t − τ, t  = u + τ, entonces,

�f�t − τ�� = ∫  f�u�e−�u+τ�sdt = ∫  f�u�e−sue−τsdu 
∞

0

∞

0
∞

0
= e−sτ ∫  f�u�e−sudu = e−sτ f�s�
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Ejemplo 8
Determinar la transformada de la función x�t�= sen�t − 5� 

para t ≥ 5.

Como conocemos la transformada de sen t, es 1
s2 + 1

, aplica-

mos la propiedad de desplazamiento y obtenemos:

�sen�t − 5�= 1
s2 + 1 

e−5s

f)	 Transformada de la integral

Teorema 7
Sea f�t� una función seccionalmente continúa en el intervalo 

�0,∞�, y cuya transformada es F�s�. Entonces, 

� ∫
t

0
 f�t�dt� = 

F�s�
s

 + ∫
t

−∞  
f�t�dt,	

	          	          
(18)

pero la función es cero si t < 0 y se tiene que:

� ∫
t

0
 f�t�dt� = 

F�s�
s  				             

(19)

Demostración:

Sea dg
dt  

= f�t�. 

Entonces, 

 �dg
dt

� = �f�t�� 	y en consecuencia:
 

�f�t�� = sG�s� − g�0�, 	 donde 

G�s� = �g�t��,   y   g�t� ≌  ∫     
t

−∞
f�t�dt, 	 con 

 g�0� =  ∫     
0

−∞  
f�t�dt. 
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Sustituyendo nos queda: 

�f�t�� = s �  ∫     
t

−∞
f�t�dt� −  ∫     

t

−∞  f�t�dt

Despejando se obtiene:

�  ∫     
t

−∞
 f�t�dt� = 

F�s�
s  

+  ∫     
t

−∞  f�t�dt

Ejemplo 9
Determine la transformada de la función:

f�t�=  ∫     
t

0
e−2t sen�5t�dt.

Buscamos primero la transformada del argumento:

e−2t sen�5t�, 
5

�s + 2�2 + 25
 

y aplicamos la propiedad de la integral, para determinar la 
transformada de f�t�, se obtiene:

 �f�t�� = F�s� =                            =   
5

s ��s + 2�2 + 25�

5
�s + 2�2 + 25

s

g)	 Propiedad de escalamiento en el tiempo

Teorema 8 
Una función está escalada en el tiempo y está definida por 

f�at� de tal manera que su transformada.

 �f�t��=  ∫     
∞

0  f�at�e−stdt 

viene dada por:

  �f�at��= 1
a  

F �
s
a

�
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Demostración:
Sabemos que:

 ∫     
∞

0
f�at�e−stdt 

Haciendo un cambio de variables.

u = at,  t = 
u
a ,  du = adt ⇒

 

du
a  

= dt 

y sustituyendo en la integral obtenemos:

1
a  

 ∫     
∞

0  
f�u�e

u
a−s

 dt =
 
1
a 

F �
s
a�

Ejemplo 10
Determine la transformada de la función x�at� = �at�2.
Como conocemos la transformada de la función 

f�t� = t ↔  
2
s3, 	 aplicamos la propiedad del Ejemplo 7 y 

obtenemos:

�x�at�� =                  =         =
3

1
a

2 2
s3

2a2

s3

�   �s
a

h)	 Teorema del valor inicial

Teorema 9
Sea f�t� una función seccionalmente continúa en el intervalo 

�0,∞� y cuya transformada F�t� existe. Entonces podemos co-
nocer su condición inicial en t = 0 mediante la propiedad:

t →0
lím

 
f�t� = 

s →∞
lím sf�s� = f�0�      			            (20)

Demostración: 
Sabemos que:
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�df
dt

�= − f�0� =  ∫     
∞

0

df
dt 

e−stdt 
por lo que,

s →∞
lím  ∫     

∞

0

df
dt 

e−st dt = 
s →∞
lím �sF�s� − f�0��,

pero

f�0� = 
t →0
lím

 
f�t�        y        

s →∞
lím  ∫     

∞

0

df
dt 

e−st dt = 0

y nos queda:

t →0
lím

 
f�t� = 

s →∞
lím  sF�s�= f�0�

Ejemplo 11
Suponga que la función x�t� tiene la transformada:

X�s� =
 

−3s2 + 2
s3 + s2 + 3s + 2

Determine x�0�
Aplicando el teorema de valor final nos queda:
			 

x�0� = 
s →∞
lím sX�s� = 

s →∞
lím  

−3s3 + 2s
s3 + s2 + 3s + 2

 = 
−3
1

 = −3

i)	 Teorema del valor final

Teorema 10 
Sea una f�t� función seccionalmente continúa en el intervalo 

�0,∞� con transformada F�s�. Entonces podemos conocer f�∞� 
por la relación:

f�∞� = 
s →0
lím sF�s�					             (21)

Demostración:
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Sabemos que:

s →0
lím  ∫     

∞

0

df
dt  e−stdt = 

s →0
lím �sF�s� − f�0��

y también que:

 ∫     
∞

0

df
dt dt = 

s →0
lím �sF�s� − f�0�� = 

t →∞
lím �f�t� − f�0��  

                = 
s →0
lím �sF�s� − f�0��

 
por lo que:

t →∞
lím f�t� = 

s →0
lím sF�s� = f�∞�

Ejemplo 12
Determinar el valor final e inicial de la función x�t� = 4e−5t − 

3e−2t.
s − 7

s2 + 7s + 14
X�s� =             −             = 4

s + 5
3

s + 2

x�0� =                                = 1
s2 − 7s

s2 + 7s + 14s →∞
lím

x�∞� =                               = 0
s2 + 7s

s2 + 7s + 14s →0
lím

 
Ejemplo 13
Suponga que X�s� es una función racional dada. Halle x�∞�.

 

X�s� =                            =
2s2 − 3s + 4
s3 + 3s2 + 2s

2s2 − 3s + 4
s�s + 1��s + 2�

x�t� =         s                            =      = 2
4
2

2s2 − 3s + 4
s�s + 1��s + 2�s →0

lím
t →∞
lím
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x�0� =                                       = 2

s�2s2 − 3s + 4�
s�s + 1��s + 2�s →∞

lím

Resumen de Transformadas

f�t� �f�t�� = F�s�

1,     t ≥ 0
1
s

, s ˃ 0

eat
1

s − a

tn
n!

sn+1

sen�bt�
b

s2 + b2

cos�bt� 
s

s2 + b2

eat tn
n!

�s − a�n+1

eat sen�bt�
b

�s − b�2 + b2

eatcos�bt�
s − a

�s − a�2 + b2

f �t − τ� e−sτ F�s�

∫f �t�dt
F�s�

s

f�at�
1
a 

F�s/a�
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Transformada inversa de Laplace
En la sección anterior definimos a la transformada de Lapla-

ce como un operador integral que asocia a cada función f�t�con 
una función F�s�. En esta sección pretendemos encontrar f�t�, 
cuando conocemos la transformada F�s�, es decir, queremos 
hallar la transformada inversa de Laplace.

Definición de transformada inversa de Laplace
Sea una función F�s�. Si existe una función f�t� que sea sec-

cionalmente continua en el intervalo �0, ∞� y satisfaga la rela-
ción:

-1�F�s�� = f�t� 					              (22)

entonces f�t�es la transformada inversa de Laplace de F�s�.

Ejemplo 14
Determinar la transformada inversa de Laplace -1�F�s��, 

donde: 

i) F�s� = 
6
s4

     

ii) F�s� = 
6

�s − 2�2 + 36
  

iii) F�s� = 
s − 1

s2 − 2s + 5

Para calcular la transformada inversa de Laplace -1�F�s��, 
usaremos la tabla de transformadas y las propiedades de la 
transformada estudiadas en la sección anterior.

i) -1�
6
s4

� = -1�
3!
s4 � = t3

ii)  -1�
6

�s − 2�2 + 36
 � = e2t sen�6t�
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iii) -1�
s − 1

�s − 1�2 + 4� = 

 

et cos�2t�

En la práctica no siempre es fácil encontrar una transforma-
da inversa que aparezca en la tabla de transformadas de Lapla-
ce; para funciones más complejas usaremos las propiedades 
de -1 así como también las propiedades de la transformada de 
Laplace (). Una de las herramientas más útiles es la propie-
dad de la linealidad, la misma es heredada de la linealidad de la 
transformada de Laplace y se enuncia a continuación.

Teorema 11

Sean -1�F1�s�� y -1 �F2�s�� funciones que existen y son con-
tinuas en el intervalo �0,∞�, entonces: 

-1 �F1�s� + F2�s�� = -1 �F1�s�� + -1 �F2�s��  	          (23)

Ejemplo 15
Determinar la transformada inversa de Laplace de:

F�s� = -1 � 4
s − 3

 + 2s
s2 + 4 

+ 10
3s2 + 6s + 9  

�

Primero aplicamos la propiedad de linealidad:

f(t) = 4 -1 �
1

s − 3
�+ 2 -1 �

s
s2 + 4

�+ 
10
3

  -1  
1

s2 + 2s + 3

De la tabla de transformadas de Laplace obtenemos que:

 4-1 �
1

s − 3
� = 4e3t,  y  2-1�

s
s2 + 4

� = 2cos 2t

Ahora bien, para calcular:



48 Capítulo 2. Fundamentos matemáticos. La transformada de laplace.

�10
3

�
 
-1� 1

s2 + 2s + 3
�

es necesario hacer algunas manipulaciones para llevarla a una 
expresión que aparezca en la tabla, para ello completamos cua-
drados en el denominador para obtener s2 + 2s + 3 = �s + 1� + 2 
y luego sustituyendo en la transformada nos queda:

� 10
3√2

�-1 �
√2

�s + 1�2 + 2  
�

Si la ubicamos en la tabla de transformadas, de donde obte-

nemos el siguiente resultado 10
3 √2  

e-t sen�√2t�.

Por lo tanto, la solución total es:

f�t� = 4e3t + 2cos �2t� + 10
3√2  

e-t sen �√2t�

Ahora bien, si usted tuviese la oportunidad de hallar la trans-
formada inversa de Laplace de la función:

F�s� = 5s + 3
s3 + 7s2 + 14s + 8

 

o de:

F�s� = − 2
3  

1
s + 1 

+
 

7
2   

1
s + 2 

− 17
6  

1
s + 4

que es igual a la anterior, por supuesto, es mucho más fácil en-
contrar la solución de la segunda función, pues esta expresión 
está en una forma que permite usar el método de fracciones 
parciales. Estudiaremos este método a continuación.

Método de fracciones parciales
Este método consiste en expresar una función F�s� de la for-

ma P�s�/Q�s� (función racional), donde P�s� y Q�s� son polino-
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mios en s, y donde el grado de P�s� es menor que el grado de 
Q�s�, por lo cual tienen un desarrollo en fracciones parciales 
cuya forma está compuesta por factores lineales y cuadráticos 
de Q(s). Debemos considerar tres casos:
1.	 Raíces reales diferentes.
2.	 Raíces reales repetidas.
3.	 Raíces complejas o factores cuadráticos.

1.	 Raíces reales diferentes
Si podemos expresar Q�s� en factores lineales distintos (fac-

torización de polinomios) de la forma:

Q�s� = �s − r1� �s − r2� ... �s − rn�

donde los valores ri, i = 1, 2, … , n son números reales, podemos 
representar la función en fracciones parciales como:

F�s� = P�s�
Q�s�

 = 
A1

s − r1

 + 
A2

s − r2

 + .... + 
An

s − rn

donde las constantes Ai, i = 1, 2, … , n son números reales. 

Ejemplo 16

Determinar la transformada inversa de Laplace -1 �F1�s��, si

F�s� = 
5s + 3

s3 + 7s2 + 14s + 8
la cual podemos expresar de la siguiente manera:

F�s� = 
5s + 3

s3 + 7s2 + 14s + 8  
= 

A
s + 1

 + 
B

s + 2
 + 

C
s + 4

Hay muchas formas para encontrar estas constantes, para 
nuestro caso las determinaremos considerando a A, B, C cons-
tantes o residuos de F�s� y se calculan multiplicando ambos la-
dos de la ecuación por �s − sn� siendo sn la raíz de s que le corres-
ponde a cada constante y se le asigna el valor de sn a s, es decir, 
�s + 1� F �s��s= 1 =  A, como se muestra a continuación:
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 A = 
5s + 3

�s + 2��s + 4�  
�

s= −1
 = 

−2
3

B = 
5s + 3

�s + 1��s + 4�
�

s= −2 = 
−7
−2  

= 
7
2

C = 
5s + 3

�s + 1��s + 2�
�

s= −4         C = −
17
6

Por lo tanto,

F�s� = 
5s + 3

s3 + 7s2 + 14s + 8  
 

F�s� = − 
2
3 

.
 

1
s + 1

 + 
7
2 

. 1
s + 2

− 
17
6  

. 1
s + 4

Por último, la transformada inversa de Laplace -1 �F1�s�� es:

f�t�= − 
2
3 

e−t + 
7
2 

e−2t − 
17
6  

−4t, para t > 0

2.	 Raíces reales repetidas
Sea �s − r1� un factor lineal repetido de Q�s� y supongamos 

que �s − r1�m es la máxima potencia de Q�s�. Entonces la parte 
del desarrollo en fracciones parciales de:

 
P�s�
Q�s�

 corresponde al término �s − r1�m, es:

A1

�s − r1�
A2

�s − r1�
An

�s − r1�n
                +                + .... +

 
,
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donde los Ai son números reales.

Ejemplo 17

Determinar la transformada inversa de Laplace -1 �F1�s��, 
si,

F�s� = 
s2 + 9s + 2

s3 + s2 − 5s + 3

Ésta la podemos expresar en la forma:

 F�s�=                             =                  +                +
s2 + 9s + 2

�s − 1�2�s + 3�
A

�s − 1�2

B
�s − 1�

C
�s + 3�

Para encontrar las constantes usamos el mismo método an-
terior, pero con una variante que explicaremos en el desarrollo 
del ejemplo.

Para encontrar A se procede de manera análoga al ejercicio 
anterior:

A = 
s2 + 9s + 2

�s + 3�
 �

s= 1 = 
12
4

 = 3

Para el caso de la constante debemos de aplicar la fórmula 
siguiente:

A1k = 
1

�k − 1�!
dk−1A�s�

dsk
�

s= r1			            
(24)

Si aplicamos esta relación para encontrar B, tenemos que:

B = 
1

�1 − 1�! ds

s2 + 9s + 2
s + 3

d �                     �

�
s= 1
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= 
�2s + 9��s + 3�−�s2 + 9s + 2�

�s + 3�2
�

s= 1

32
16

44 − 12
16

=                 =         = 2

y

C = 
s2 + 9s + 2

�s − 1�2
�

s= −3

= − 
16
16

 = −1

Obtenemos entonces el resultado para la transformada in-
versa como:

f�t� = 3tet + 2et  − e−3t 

3.	 Factores cuadráticos con raíces complejas
Para este caso podemos expresar a Q(s) en factores cuadráti-

cos o en factores con raíces complejas de la forma:

Q�s� = �s − α + bj� �s − α − bj�   o   Q�s�= ��s − α�2 + β2�

Hay dos formas de encontrar la solución en este caso; prime-
ro resolveremos usando las raíces complejas y luego usaremos 
el método por factores cuadráticos y el lector escogerá el que 
más le agrade.

Para resolver por el método de las raíces complejas, se pro-
cede de la siguiente manera: Si s1 = p1 = σ + ωj, donde p2 = p̄1 es 
el complejo conjugado de p1. 

Entonces,

F �s� = 
C1

�s − p1�  
+

 

C̄1

�s − p̄1�
 

y la solución buscada será f(t) =  −1�F�s��, es decir,

f �t� = C1 e
−p1t + C̄1 e

−p̄1t 

la cual se puede expresar también como:
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f �t� = 2�C1� e
−σt cos�ωt + ∠ C1� 			            (25)

donde

C1 =  �s − p1� f�s��s−p1
   

Por el contrario, si queremos resolver por el método de fac-
tores cuadráticos, se procede de la siguiente forma:

Se factoriza Q�s� usando completación de cuadrados de la 
forma �s − α�2 + β2.

Luego se construye la fracción parcial de la forma,

f �s� = 
A�s − α�

�s − α�2 + β2  
+ 

B�β�
�s − α�2 + β2 		           

(26)

donde los valores de A y B se determinan por el álgebra básica.
La trasformada inversa es:

f �t� = Aeαt cos�βt� + Beαt sen�βt� 

Ejemplo 18
Determine la transformada inversa de Laplace de la función. 

F�s� = 
s2 − 2s + 1

s2 + 3s2 + 4s + 2
Primero procederemos por el método de raíces complejas:

F�s� =  
s2 − 2s + 1

�s + 1 − j��s + 1 + j��s + 1�

	       
= 

A
�s + 1 − j� 

+ 
A̅

�s + 1 + j� 
+ 

B
�s + 1�

Para encontrar el valor de A hacemos el procedimiento antes 
explicado en el método de expansión en fracciones parciales.

A =  
s2 − 2s + 1

�s + 1 + j��s + 1�
�

s=−1+j 
= 

−3
2  

+ 2j 
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|A| = 
5
2   

y   ∠ A = 180 + tan−1 �− 
4
3 

� = 126.87°

 B = 
s2 − 2s + 1

�s2 + 2s + 2�  
�

s=−1 
= 4

La solución completa es:

f�t� = 5e−t cos�t + 126.87°� + 4e−t para t ≥ 0

Usando el procedimiento de factores cuadráticos resolve-
mos factorizando Q�s� para obtener Q�s� = ��s + 1�2 + 1��s + 1� 
y entonces,

F�s�=                         +                        +
A�s + 1�

�s + 1�2 + 1
B

�s + 1�2 + 1
C

�s + 1�

Resolviendo por álgebra básica nos queda:

�s2 − 2s + 1� =  A�s + 1�2 + B�s + 1� + C �s2 + 2s + 2�

C = 
s2 − 2s + 1

�s2 + 2s + 2�  
�

s=−1 
= 4

−3 = A

−10 = 6 + B ⇒ B = −4

y a transformada inversa de F(s) es:

f�t� = −3e−t cos t − 4e−t sen t + 4e−t = 5e−t cos�t + 126.87°�

Aplicaciones de la Transformada de Laplace a las 
ecuaciones diferenciales

Ejemplo 19
Resuelva la siguiente ecuación diferencial con los valores 

iniciales dados.
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y'' + 2y' + 2y = t,          y�0� = 1 y'�0� = 1

Primer paso: se aplica la transformada a ambos lados de la 
ecuación diferencial.

s2Y�s� − sy�0� − y'�0� + 2�sY�s� − y�0�� + 2Y�s� = 
1
s2

Y�s��s2 + 2s + 2� = s + 3 + 
1
s2

Y�s� = 
s3 + 3s + 1

s2�s2 + 2s + 2�

Segundo paso: se busca Y�s� usando el método de fraccio-
nes parciales; esto se deja como ejercicio al lector. Se obtiene:

Y�s� = 
3
2

 
�s + 1�

�s + 1�2 + 1 
+ 2 

1
�s + 1�2 + 1

            − 
1
2

�
1
s

�+ 
1
2  

�
1
s2

�

Tercer paso: se determina la transformada inversa de Y�s� 
para obtener y�t�.

y�t� = 
3
2 

e−-t cos t + 2e−t sen t − 
1
2

 + 
1
2

 t

Convolución de funciones

Teorema 12
Sea dos funciones f�t� y g�t� seccionalmente continuas en 

�0,∞�. La convolución de las funciones f�t� y g�t�se denota 
como:

f�t�* g�t� =  ∫     
t

0
 f�u� g�t − u�du 			            (27)

Propiedades
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a.	 f�t�* g�t� = g�t�* f�t�

b.	 f�t�* �g�t� + h�t�� = f�t�* g�t� + f�t�* h�t�

c.	 �f�t�* g�t�� *h�t� = f�t�* �g�t�* h�t��

d.	 f�t�* 0 = 0

Ejemplo 20
Sean f�t� = t y g�t� = t2 funciones continuas en el intervalo �0, 

∞�. Determine la convolución f�t�* g�t�.

f�t�* g�t� =  ∫     
t

0
u�t − u�2du =  ∫     

t

0
u�t2 − 2ut + u2�du  

	  	  
=  ∫     

t

0  �ut2 − 2u2t + u3�du = �
t2u2

2  
−

 

2
3 

u3t + 
u4

4
��

t

0

		   = 
t4

2
 − 

2
3

 t4 + 
t4

4
 = � 

3
4

 − 
2
3

 �t4 = 
1

12
 t4

Ejemplo 21

Hallar -1

 
�

1
�s 2+ 1�2  

�.

Tenemos que:
1

�s 2+ 1�2  
= 

1
�s 2+ 1� 

.
 

1
�s 2+ 1� 

por lo que

-1�
1

�s 2+ 1�  

1
�s 2+ 1� 

� = sen t * sen t 

                                           =  ∫     
t

0
sen�u� sen�t − u�du 

			             = 
sen t − t cos t

2
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Se deja la comprobación del resultado al lector usando la 
trasformada inversa y propiedades de la transformada de La-
place.

Transformada de la función delta de Dirac
Un concepto importante en la teoría de sistemas es la fun-

ción impulso o también llamada delta de Dirac, se representa 
como δ�t� definida así:

t

d(t)
1

Fig. 9. Gráfica de la función Delta de Dirac.

                    
1	  −ε ≤ t ≤ ε   ∴ ε → 0

δ�t� = �
                    0    t > ε,  t < − ε 
La función impulso o delta es muy importante en la ciencia e 

ingeniería, el comportamiento de un sistema puede describirse 
si lo perturbamos de manera abrupta cuando está en reposo, 
está perturbación significa inyectarle una cantidad finita de 
energía en un lapso de tiempo muy corto, un ejemplo práctico 
es, cuando la raqueta de un tenista golpea la pelota. 

Existen varias maneras de representar el impulso, la repre-
sentación con más analogía física de la cual se deriva, es la que 
se muestra en la Figura n° 9.

Ahora bien, la transformada de Laplace de la función impul-
so o delta de Dirac es:

 �δ�t�� = ∫     
t

0
δ�t�e−stdt = 1 				             

(28)

Demostración:
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 �δ�t�� = ∫     
t

0
δ�t�e−stdt =

ε →∞
lím  ∫     

t

0

e−st

ε  
dt = 

ε →∞
lím −1

εs  
e−st�

t

0

 

                =
ε →∞
lím

 
1 − e−st

εs

El cálculo del límite indeterminado 0
0

 se puede resolver apli-

cando la regla de L´Hopital derivando el numerador y el deno-
minador con respecto a ε.

Nos queda:

=                                   =                        = 1
1 − e−εs

εs
se−εs

s
dε

d�εs�

d�1 − e−εs�

dε

ε →∞
lím

ε →∞
lím

ε →∞
lím

De esta prueba se deduce:

�δ�t − t0�� = e−tso       				             (29)

 Esta conclusión se demuestra usando la propiedad de des-
plazamiento en el tiempo de la transformada de Laplace, expli-

 Fig. 10. Aproximación de la función impulso.

δn�t�

1
εn

1
ε2

1
ε1

⁞

1
εn

1
ε2

1
ε1

⁞
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cada con anterioridad.

Desarrollo de fracciones parciales usando Matlab
Para ello utilizaremos el comando RESIDUE(n, m), si tene-

mos una función racional Y�s� donde se puede aplicar algún 
caso del método de fracciones parciales, el desarrollo de

Y�s� = P�s�
Q�s�

,

donde el grado del polinomio Q(s) es mayor o igual que el grado 
del polinomio:

P�s� y Y�s� = r�1�
s − p1  

+ r�2�
s − p2 

+ .......... r�n�
s − pn  

+ k, 

donde las r son las constantes,

Y�s� = �s − p1��s − p2��s − p3�.......�s − pn�, 

y k representa el residuo de la división de polinomios.

Ejemplo 22
Sea

Y�s� = s
2 + 2s + 3
�s + 1�3  

 = A
�s + 1� 

+ B
�s + 1�2  

+ C
�s + 1�3

 . 

Podemos expresar
 Y�s� de la forma:

Y�s� = s2 + 2s + 3
s3 + 3s2 + 3s + 1

>>num=�0 1 2 3�;
>>dem=�1 3 3 1�;
>>�r,p,k�=residue(num,den)
		  Corrida
r =

1.000
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0.000
2.000

p=
-1.000
-1.000
-1.000

k=
0.000

Este resultado representa la transformada:

Y�s� = 
1

�s + 1�  
+ 

0
�s + 1�2  

+ 
2

�s + 1�3

Adicionamos el comando printsys(m, n, ’s’) para escribir la 
ecuación:

>> printsys(num,den,’s’)
El resultado de la corrida es:

Num/dem = s⌃2+ 2s + 3
s⌃3 + 3s⌃2 + 3s +1 
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PROBLEMAS

1.	 Determine la transformada de Laplace de las funciones 
siguientes:

1.1	  f�t� = 4cos�3t�e−4t 

1.2	  f�t� = 5cos�3t�e−t + t2 cos�5t�

1.3	  f�t� = t3e−t  sen�2t�

1.4 	  f�t� = �t − 4�et−4 μ�t − 4�

1.5	  f�t� = cos�2t� − 4 sen�5t� 

2.	 Determine la transformada de Laplace de las funciones 
mostradas en las gráficas.

2.1     

2.2

2

2 4 6 8 10 t

2

2 3 4 t



62 Capítulo 2. Fundamentos matemáticos. La transformada de laplace.

3.	 Determine la transformada inversa de las siguientes 
funciones por el método de fracciones parciales.

3.1 	 F�s� = 4s − 5
s3 + 5s2 + 4s 

3.2	  F�s� = 5s2 + 3s + 2
s3 + 5s2 + 8s + 4

3.3	  F�s� = 14s + 3
s4 + 8s3 + 14s2 + 12s

 

3.4	  F�s� = 8�s + 2�2

s�s2 + 10s + 20�

3.5	  F�s� =

 

3
2

s�s+      ��s2 + 5s + 5�

2�s2 + s +1�

3.6	  F�s� = 2�s + 2�
s�s2 + s + 2�

4.	 Resolver las siguientes ecuaciones diferenciales usando 
transformada de Laplace.

4.1	  y'' + 4y' + 5y = 8cos t,   y�0� = 0, y'�0� = 0    

4.2   5y'' + 3y' + 2y = 8,   y�0� = 1, y'�0� = 1

4.3   x''' + 3x'' + x' + 3x = 4   x�0� = 1, x'�0� = 2,  x''�0� = 5

4.4   x''' + 2x'' + 5x' + 6x = 3 f�t� + 2 df�t�
dt

 donde f�t� = t2 

	 x�0� = 1, x'�0� = 0,  x''�0� = 0

4.5   2x'' + 12x' + 10x = 6cos�4t�  x�0� = 1,  x'�0� = 8
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5.	 Determine la transformada inversa de las siguientes funcio-
nes usando el teorema de convolución de funciones.

5.1	 F�s� = 
 

10
�s + 1�2

5.2	 F�s� =  2s
�s2 + 4�

5.3	 F�s� =  1
s�s + 2�2

 

5.4	 F�s� =  10s
s3+ 2s2 + 4s + 8
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Introducción
En la teoría de control muy frecuentemente se usan las fun-

ciones de transferencia para describir las relaciones entre la en-
trada y la salida de componentes o de sistemas que se modelan 
por medio de ecuaciones diferenciales lineales invariantes en 
el tiempo; se comenzará por definir la función de transferencia, 
para luego calcular la función de transferencia de sistemas re-
presentados en diagramas de bloques y en espacios de estado.

Definición de función de transferencia 
La función de transferencia se define como el cociente de la 

transformada de Laplace de la salida (función de respuesta del 
sistema) y la transformada de Laplace de la entrada (función 
excitación), bajo la suposición de que todas las condiciones ini-
ciales son cero, es decir, se considera que el sistema bajo estu-
dio está en reposo. 

CAPÍTULO 3

LA FUNCIÓN DE TRANSFERENCIA
Gráficos de flujo de señal y diagramas de 

bloques

Para el sistema ilustrado en la Figura n° 11, la salida R�s� es 
el producto de la ganancia G(s) y la entrada R�s�, lo que implica 
que C�s� = R�s� G�s�; la ganancia del sistema es entonces G�s� 

= 
C�s�
R�s�

; para sistemas descritos por ecuaciones diferenciales li-

R�s� G�s� C�s�

 Figura 11. Representación de la ganancia de un sistema
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neales e invariantes en el tiempo, tal como:
an y

�n� + an−1 yn−1 + an−2 yn−2 +.....+ a1 y' + a0 y =

bn x
�m� + bn−1 xm−1 + bn−2 xm−2 +.....+ b1 x' + b0 x

la ganancia viene dada por:

G�s� = 
Y�s�
X�s� 

 = 
bm s

m + bm−1 sm−1 +..... b1 s + b0

an s
n + an−1 sn−1 +..... a1 s + a0 	          

(30)

Para el análisis de los sistemas de control usaremos el mode-
lo a lazo cerrado, el cual nos servirá para el cálculo y represen-
tación de cualquier sistema expresándolo en la forma ilustrada 
en la Figura n° 12, cabe destacar que la definición de G�s� se 
han considerado para sistemas en reposo, lo que traduce que 
las condiciones iniciales son cero.

A continuación analizamos el diagrama de bloques del siste-
ma mostrado en la Figura n° 12; utilizando la definición ante-
rior de ganancia, obtenemos a:

 C�s� = G�s� E�s�    y    E�s� = R�s� − C�s� H�s�, 

y si ahora combinamos las ecuaciones despejando C�s� de la 
segunda y sustituyéndola en la primera para determinar la ga-
nancia total del sistema,

Fig. 12. Modelo de sistemas de control a lazo cerrado.

G�s�

H�s�

C�s�E�s�

−

R�s�        +
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G�s� = 
C�s�
R�s�

, 

obtenemos que: 

C�s� = G�s��R�s� − C�s�H�s��; 

así mismo operamos y obtenemos, 

C�s� = G�s�R�s� − C�s�G�s�H�s�, 

y finalmente despejamos a C�s�lo que nos da:

C�s� + C�s�G�s�H�s� = G�s�R�s�, 

luego, 

C�s� = 
G�s�R�s�

1 + G�s�H�s�
, 

para obtener finalmente:

GT�s� = 
C�s�
R�s� 

= 
G�s�

1 + G�s�H�s�
, 			            (31)

donde la ecuación característica está definida por:

1 + G�s�H�s� = f�0� =0, 				             (32)

y la cual nos será muy útil para estudiar la estabilidad de los 
sistemas.

Estas ecuaciones representan el modelo matemático a uti-
lizar en el análisis del comportamiento y la estabilidad de sis-
temas de control de lazo cerrado que puedan reducirse a este 
modelo. Es importante hacer notar que el procedimiento segui-
do para encontrar la ganancia del sistema, no es el más efectivo; 
sin embargo, se utilizó por razones de sencillez y de ilustración. 
Más adelante en este capítulo mostraremos algunos métodos 
más efectivos para sistemas más complejos.
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Propiedades de la función de transferencia
Las propiedades de la función de transferencia quedan resu-

midas de la siguiente manera:
a)	 La función de transferencia está definida sólo para sistemas 

lineales invariantes en el tiempo, no está definida para siste-
mas no lineales.

b)	 La función de transferencia es independiente de la magnitud 
y naturaleza de la entrada o función de excitación.

c)	 Todas las condiciones iniciales son cero.
d)	 La función de transferencia de sistemas continuos es expre-

sada sólo como una función de la variable compleja s, para el 
caso discreto los sistemas son modelados por ecuaciones de 
diferencias y la función de transferencia es una función de z, 
donde la transformada Z es la usada para este caso.

e)	 Si se conoce la función de transferencia de un sistema, se es-
tudia la salida o respuesta para varias formas de entradas 
con la intención de conocer las características del sistema.
Volvamos a la definición de función de transferencia de 

ecuaciones diferenciales invariantes en el tiempo mostrada en 
la ecuación (30), ésta se denomina estrictamente propia debido 
a que n > m, implica que el grado del polinomio del denomina-
dor debe ser mayor al grado del polinomio del numerador.

Función de transferencia de sistemas de múltiples 
entradas y múltiples salidas

La definición de la función de transferencia se puede exten-
der a sistemas con múltiples entradas y múltiples salidas, defi-
niendo en este caso una matriz de ganancias. Para ilustrar esto 
mostramos el siguiente caso: sea el sistema definido por dos 
entradas y dos salidas mediante las ecuaciones:

Y1�s� = G11�s� R1�s� + G12�s� R2�s�		           (33)

Y2�s� = G21�s� R1�s� + G22�s� R2�s�		           (34)
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La salida del sistema queda representada por el vector: 

Y�s� = 
Y1�s�
Y2�s�

�            � ,

la entrada por el vector: 

R�s� = 
R1�s�
R2�s�

�            �,

y la matriz de Ganancia se define entonces por:  

G�s� = 
G11�s� G12�s�
G21�s� G22�s�

�                          �,

Generalizando para el caso de m entradas y n salidas, se ob-
tiene que la matriz de ganancia queda definida por:

 							               

Gnm�s� = 

G11�s� G12�s� G13�s�  .   G1m

G21�s� G22�s� G23�s�  .   G2m

G31�s� G32�s� G33�s�  .   G3m

Gn1�s� Gn2�s� Gn3�s�  .   Gnm

   .	 .	 .	 .

         	          

(35)

Diagrama de bloques de un sistema
Un sistema de control puede estar constituido por varios 

componentes, el diagrama de bloque es la representación gráfi-
ca en bloque funcional de las funciones que representan a cada 
componente que conforma el sistema, los diagramas muestran 
las relaciones existentes entre estos diversos componentes. Así 
mismo, es importante destacar que la representación del siste-
ma es realizado mediante el uso de figuras geométricas que a su 
vez representan los dispositivos o componentes que están en-
cargados de realizar funciones específicas. Generalmente son 
rectángulos, cuadrados (bloques) y círculos que se interconec-
tan mediante líneas rectas orientadas que indican el flujo de la 
señal o de la información.
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Un diagrama de bloques representa las etapas más impor-
tantes de un sistema sin hacer énfasis en las características 
internas de cada etapa o bloque, sino más bien en su relación 
entre la entrada y la salida, la cual puede ser expresada mate-
máticamente por la función de transferencia. Generalmente el 
diagrama de bloques se expresa en el dominio de s; sin embar-
go, también se puede expresar en el dominio de t.

Elementos de un diagrama de bloques
a) Bloque funcional: se representa por un rectángulo y 

hace referencia a dispositivos que realizan operaciones mate-
máticas dentro del sistema, también puede decirse que repre-
sentan una planta.

b) Sumador o comparador: esta representado por una cir-
cunferencia dividida donde cada porción de ella debe indicar 
un signo matemático de suma o resta y hace referencia a que 
la salida es la suma algebraica de las señales que ingresan al 
sumador.

c) Punto de bifurcación: es el punto del cual una señal que 
sale de un bloque que va de manera concurrente a otros blo-
ques o puntos de suma, en este punto se derivan líneas dirigi-
das para indicar que se ha tomado una muestra de la señal de 
salida del bloque funcional.

Fig. 13. Elementos de un diagrama de bloques.

G�s�

H�s�

C�s�E�s�

−

R�s�    +

Punto de 
bifurcación

Bloques 
funcionalesSumador
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	 Ejemplo 1
A continuación mostramos un ejemplo ilustrativo de un 

diagrama de bloques para un sistema con dos salidas y una en-
trada.

Representación de ecuaciones diferenciales por diagra-
ma de bloques 

Para representar una ecuación diferencial invariante en el 
tiempo de orden “n” se debe aplicar el método que se describe 
en el siguiente ejemplo:

Ejemplo 2
Determinar el diagrama de bloques de la ecuación diferen-

cial de tercer orden:

4y''' + 8y'' + 12y' + 2y' = f�t�,	 f�t� = e−t μ�t�

Primer paso: despejar la derivada de mayor grado.

y'''  = 
f�t�

4  
− 2 y''− 3 y' − 

1
2 

y

Segundo paso: construir el diagrama de bloques usando la 
ecuación anterior.

Fig. 14. Diagrama de bloques de un sistema de dos salidas.

H1�s�

G1�s�

a

G2�s�

H2�s�

C1�s�
+

+
+

−

−

R�s�

C2�s�
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Para construir el diagrama de bloques de la ecuación dife-
rencial se debe partir de la ecuación del primer paso, como se 
ve, la suma de todas las derivadas de menor orden, más la señal 
de entrada es igual a la derivada de mayor, por lo tanto se debe 
colocar a la salida del sumador. Para encontrar las derivadas de 
menor grado se debe integrar tantas veces como el grado de la 
derivada lo indique. Así mismo, se deben colocar bloques fun-
cionales con los coeficientes de las derivadas que deben partir 
desde cada una de ellas para conectar con el sumador e igual-
mente con la entrada, las cuales deben de llegar al sumador in-
dicando el signo que corresponda, indicado en la ecuación del 
primer paso, quedando el sistema como el mostrado en la Figu-
ra n° 15.

Obsérvese que todo lo que llega al sumador da como resul-
tado a y'''; esto quiere decir que se cumple estrictamente la 
igualdad de la ecuación despejada en el primer paso, luego las 
integrales serán sustituidas por 1/s al aplicar la transformada 
de Laplace al diagrama de bloques donde la salida será Y�s� y 
la entrada F(s), las realimentaciones con valor de -2, -3 y -1/2 
representan los coeficientes de las derivadas de menor orden 
que y'''. 

El siguiente diagrama ilustra la forma de representar una 
ecuación diferencial invariante en el tiempo en el dominio de 
Laplace, para ello se debe sustituir las integrales por su trans-

formada, la cual esta representada por 
1
s

 y cambiar las entradas 

Fig. 15. Diagrama de bloques de la ecuación diferencial.

∫

2

3

½

∫¼ ∫
y'''f�s� y'' y' y+

−
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y las salidas en función de s. Así mismo podemos decir que para 
cualquier ecuación diferencial con coeficientes constantes debe 
tener la misma forma, sólo pueden cambiar los retornos en los 
bloques dependiendo de los signos asociados a los coeficientes 
de las derivadas de menor orden que la despejada.

Fig. 16. Diagrama de bloque final en el dominio de Laplace.

1/s

2

3

½

1/s¼ 1/s
F�s� Y�s�+

−

Ejemplo 3
Determine el diagrama de bloques de la ecuación diferencial 

y iv + 6y''' − 3y'' + 2y' + y = e−tμ�t�,
Siguiendo el proceso del ejemplo anterior, primero despeja-

mos la derivada de mayor orden 
y iv − e−tμ�t� − 6y''' + 3y'' − 2y' − y

y el diagrama de bloque resultante se dibuja en la Figura n° 17.
Para el caso de sistemas de ecuaciones diferenciales inva-

riantes en el tiempo, se sigue el mismo proceso y se respeta la 
igualdad de las ecuaciones, conectando una variable con la otra: 
este tipo de caso es el más común en sistemas de control, por-
que en un sistema no sólo se observa y se controla una variable, 
sino varias variables simultáneamente, donde algunas podrían 
ser entradas y otras salidas, dependiendo del caso; por ello hay 
que definir cuáles variables son salidas y cuáles variables son 
entradas o de proceso, para de esta forma construir de manera 
óptima el diagrama de bloques del sistema. Hay algunos auto-
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res que en este tipo de situación realizan cruces en el diagrama; 
sin embargo, esto no es recomendable porque pudiera crear 
confusión, por ejemplo, un elemento de gas, digamos, podría 
cruzarse en el diagrama con elementos eléctricos o flujo con 
presión, etc., lo que no sucede en la realidad. Por esta razón, tra-
taremos siempre de construir un diagrama de bloque sin que se 
realicen cruces en las realimentaciones.

Ejemplo 4
Dado el sistema de ecuaciones diferenciales invariantes en 

el tiempo, con condiciones iniciales iguales a cero.

y'' + 3x' − 2y' + y = e−3t

x'' − 5y' + 7x' − 2x − 2y = et�                         

Tómese X como la variable de salida y Y como la variable de 
entrada, así mismo se toman f1�t� = e−3t , f1�t� = et como entradas, 
que a su vez se convertirán en el diagrama de bloques en F1�t� 
y F2�t�, respectivamente. Siguiendo el procedimiento ilustrado 
en el Ejemplo n° 1, obtenemos:

y'' = e−3t  − 3x' − 2y' − y 

x'' = et  + 5y' − 7x' − 2x + 2y 
y el diagrama de bloques resultante se muestra en la Figura n° 
18.

Figura 17. Diagrama de Bloques de la ecuación diferencial de cuarto orden.

∫∫

6

2

∫

3

∫
y'''yivf�s� y'' y' y
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Gráficos de flujo de señal de un sistema
Los diagramas de bloques son muy útiles para representar 

las interrelaciones entre las variables controladas y las varia-
bles de entradas; sin embargo, para sistemas muy complejos el 
proceso de reducción por diagrama de bloques es muy engo-
rroso y difícil de completar, pero un diagrama de bloque y el 
gráfico flujo de señal contienen la misma información y no hay 
ninguna ventaja de uno sobre el otro, sólo hay una preferencia 
personal por el gráfico de flujo de señal como método que faci-
lita el cálculo de las ganancias de sistemas más complejos.

Definición del gráfico de flujo de señal
La representación de un diagrama de bloques en segmentos 

de rectas orientadas, como caminos orientados desde las entra-
das hasta las salidas de un sistema dado.

Elementos de un diagrama de flujo de señal
a.	 Nodo: está representado en el gráfico de flujo de señal como 

un punto, a su vez él representa las variables del sistema.
b.	 Nodo de entrada: también llamado nodo fuente, es aquel 

donde sólo salen ramas.
c.	 Nodo de salida: es aquel nodo al que sólo le llegan ramas.
d.	 Rama: es un segmento de recta orientado que parte de un 

nodo y llega a otro nodo, con ganancia y dirección asociada.

Fig. 18. Diagrama de bloques del sistema de ecuaciones.

7

5 2

Y�s� X�s�
1/s

2

2

1/s 1/s1/s

F1�s�

F2�s�

+ +

−

+ +

−
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e.	 Trayectoria: es la sucesión continua de ramas que van en 
una misma dirección.

f.	 Trayectoria directa: es aquella trayectoria que comienza 
en un nodo de entrada y termina en un nodo de salida del 
sistema.

g.	 Ganancia de una trayectoria: es el producto de todas las 
ganancias de las ramas que conforman una trayectoria.

h.	 Malla: lazo o bucle, es aquella trayectoria que se origina y 
termina en un mismo nodo.

i.	 Ganancia de un lazo o malla: es el producto de las 
ganancias de todas las ramas que forman ese lazo o malla.

X(s) Y(s)
G(s)

Variable de salida

Ganancia asociada a la rama

Variable de entrada

Y(s) = G(s) X(s), o G(s)= 
Y�s�
X�s�

j.	 Lazos independientes (no se tocan): son aquellos lazos 
que no tienen nodos en común. 

Representación de un sistema en diagrama de flujo de 
señal

Para representar un sistema con un diagrama de flujo de 
señal, previamente debe haberse construido el diagrama de 

Fig. 19. Malla o lazo.

G(s)

H(s)H(s)

G(s)
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bloques y solo a partir de allí, se debe respetar exactamente 
la constitución del mismo, es decir, no se debe alterar ningún 
elemento, se debe sustituir cada bloque por una rama, las reali-
mentaciones deben sustituirse por lazos, sólo debemos indicar 
las variables de salida y las variables de entrada del sistema. 
Para ilustrar el procedimiento, a continuación se da un ejemplo. 

Ejemplo 5
Sea el sistema mostrado en la figura:

H1�s�

G1�s�

a

G2�s�

H2�s�

C1�s�
+

+
+

−

−

R�s�

C2�s�

R(s)

C1(s)
G1(s)

–H1(s)

G2(s)

–H2(s)

a
1

1
C2(s)

Fig. 20.  Gráfico de flujo de señal del sistema del Ejemplo 5.
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Métodos para determinar las ganancias de un sistema 
usando gráfico de flujo de señal o diagrama de bloque

 Método de reducción de diagramas de bloques
La representación en diagramas de bloques a menudo se 

pueden reducir a un diagrama de bloques simplificado, que 
mostramos en la Figura n° 12 de este capítulo como modelo de 
control, el cual ya conocemos su análisis y resultado; tales re-
ducciones son aplicadas de acuerdo a las reglas que se ilustran 
en la Tabla n° 1, estas operaciones según estas reglas se deno-
mina álgebra de bloques.

Tabla 1. Reglas de reducción en los diagramas de bloques.

DESCRIPCIÓN
1.	 Combinación de bloques.

DIAGRAMA ORIGINAL EQUIVALENTE

G1 G2

x1 x2 x3
G1 G2

x1 x3

DESCRIPCIÓN 
2. Movimiento de un punto de separación anterior a un bloque.

DIAGRAMA 
ORIGINAL EQUIVALENTE

x2
G1

x1

x2
G1

G1
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DESCRIPCIÓN 
3. Movimiento de un punto de separación posterior a un bloque.

DIAGRAMA ORIGINAL

x2
G1

x1

EQUIVALENTE

G1

G1

x1 x2

x1

DESCRIPCIÓN 
4. Movimiento de un punto de separación anterior al bloque.

DIAGRAMA ORIGINAL EQUIVALENTE

G1

x1

x1 x2

1/G1

G1

x1

x1 x2

(TABLA 1. Continuación)
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DESCRIPCIÓN 
5. Movimiento a un punto de suma posterior a un bloque.

DIAGRAMA ORIGINAL EQUIVALENTE

x3

x2

x1 G1

1/G1

G1

x1

x1 x3

x2

DESCRIPCIÓN 
6. Eliminación de un lazo de realimentación

DIAGRAMA ORIGINAL EQUIVALENTE

H1

G1

x1 x2

G1/�1+ G1 H1�
x1 x2

Ejemplo 6
Determinar la ganancia del sistema mostrado en la Figura 

n° 21 usando las reglas de la Tabla 1 para la reducción de los 
diagramas de bloques usando sus equivalentes.

(TABLA 1. Continuación)

Y�s�G4G3G2G1

R�s�

H1

H3

H2

+

−

−
+ +

+

Fig. 21.  Diagrama de bloque del sistema de una entrada y una salida.



81Alí José Carrillo Paz

Primer paso: se aplica la regla n° 2 equivalencia del movi-
miento de un punto de separación anterior al bloque G4 de la 
Tabla 1, nos queda:

Y�s�G4G3G2G1

(a)

H1

H3

G4

H2

+

−

−
+ +

+

R�s�

Y�s�G2G1

(b)
H3

G4

H2

1 − G3G4H1

G3G4+

−

−
+R�s�

Segundo paso: se aplica primero la regla n° 1 de la Tabla n° 
1. Combinación de Bloques G3, G4 y luego regla n° 6, eliminación 
de un lazo de realimentación a los bloques G3, G4  y H1, lo que nos 
da como resultado:

Tercer paso: en primer término se aplica la regla n° 6 de la 
Tabla 1, eliminación de un lazo de realimentación a los bloques. 

H2

G4

 G4     y   
G3 G4

1 − G3 G4H1

luego se vuelve aplicar la misma regla a los bloques resultantes 
de la operación anterior.

G1, 
G2 G3 G4

1 − G3 G4H1 − G3 G4H2

, H3  nos queda: 
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Finalmente, la ganancia del sistema queda definida con la 
expresión que está contenida en el último bloque producto de 
la reducción del diagrama de bloques, y se obtiene:

Y�s�
R�s�  

= 
G1 G2 G3 G4

1 − G3 G4H1 + G2 G3H2 + G1 G2 G3 G4H3 
=

 
G�s�

Fórmula de ganancia de Mason para diagrama de flujo 
de señal 

El procedimiento que permite determinar la función de 
transferencia en gráficos de flujo de señal que utiliza la deno-
minada fórmula de ganancia de Mason es relativamente simple, 
pero se debe tener mucho cuidado con los términos del nume-
rador y denominador porque fácilmente podemos pasar por 
alto algunos de ellos. 

Es importante mencionar que debido a la dificultad que han 
manifestado los estudiantes en la comprensión del cálculo de 
las ganancias de un sistema de múltiples entradas y múltiples 
salidas, mostraremos la fórmula de Mason de otra manera (más 
didáctica, usando recursos andragógicos para su fácil compren-
sión), con ello evitaremos confusiones. Sin embargo, esta no se 
cambia, en esencia es la misma mostrada desde otra perspecti-
va. Para nuestros propósitos la llamaremos sencillamente fór-
mula de Mason ampliada, basado en las definiciones anteriores 
de los elementos del gráfico de flujo de señal.

(d)

1 − G3G4H1 + G2G3H2 + G1G2G3G4H3

G1G2G3G4
R�s� Y�s�

G1

(c)
H3

1 − G3G4H1 + G2G3H2

G2G3G4
+

−

R�s� Y�s�
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 La fórmula de Mason ampliada queda expresada como:

G�s� = 
∑Mk Δk

Δ
k = 1

p

, 					              (36)

donde:
Mk = La ganancia de la trayectoria directa de la k-ésima tra-

yectoria directa de una entrada respecto de una salida.
Δ = 1- suma de las ganancias individuales de todos los lazos 

del sistema + la suma de productos de todas las combinaciones 
de los lazos independientes que existen en el sistema. 

Δk = es la parte de Δ conformado por los lazos que no toca a 
la k-ésima trayectoria directa.

Ejemplo 6
Tomemos el sistema del ejemplo n° 5 para encontrar la ga-

nancia del sistema usando la fórmula ampliada de Mason. 

Primer paso: convertimos el diagrama de bloque en el grá-
fico de flujo de señal usando las definiciones anteriores.

Segundo paso: observamos que es un sistema que tiene una 
entrada y dos salidas, lo que significa que hay que calcular dos 
ganancias, éstas conforman la matriz columna de ganancias del 
sistema, representadas por C1�s�/R�s� y C2�s�/R�s�. Para este 

R(s)

C1(s)
G1(s)

–H1(s)

G2(s)

–H2(s)

a
1

1
C2(s)
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cálculo aplicamos la fórmula ampliada de Mason. 
Para el primer caso, C1�s�/R�s�, observamos que sólo hay 

una trayectoria directa, esto significa que k = 1, desde R�s� has-
ta C1�s�.

La ganancia de la trayectoria M1 = G1�s�, así mismo calcula-
mos, 

Δ1 = 1−�−H2G2 �, 
luego determinamos el valor de: 

Δ = 1−�−H1G1 − H2G2� + �−H1G1��−H2G2� = 
1+ G1H1 + G2H2 + G1H1G2H2, 

y observamos que Δ1 es una parte de Δ que corresponde a los 
lazos que no toca esa trayectoria.  

Análogamente procedemos a calcular C2�s�/R�s�, con la di-
ferencia de que hay dos trayectorias directas M1 = aG1G2   y  M2 = 
G2�s� y Δ1 = 1, porque no hay lazos que no toque esa trayectoria, 

Δ2 = 1 + G1H1 
Tercer paso: sustituimos los términos calculados en la fór-

mula ampliada de Mason y obtenemos la ganancia del sistema 
completo:

C1�s�
R�s�  

= 
G1�s��1 + G2 H2�

1 + G1 H1 + G2H2 + G1H1G2H2

,

De igual forma hallamos:

C1�s�
R�s�  

= 
aG1G2+ G2�1 + G1 H1�

1 + G1 H1 + G2H2 + G1H1G2H2

las cuales representan las ganancias del sistema.	
Ejemplo 7
Determine la matriz de ganancias del sistema mostrado en 

la Figura n° 22. 
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Usando el mismo procedimiento anterior:

Observemos que hay una matriz de cuatro ganancias, G11�s�, 
G12�s�, G21�s�, G22�s�, aplicamos la fórmula ampliada de Mason y 
obtenemos las ganancias:

G11�s� = 

1
s

3
s

10
s2

1+      +       + 0
 ,

nótese que se suma cero porque no hay lazos independientes,

Fig. 20. Diagrama de bloques de un sistema de dos entradas y dos salidas.

3

∫

2

∫

5

C1R1

R2

+

+
+

−

C2

−

R1�s�

R2�s�

1/s

1/s

C1�s�

−3

−5

2

C2�s�
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G11�s� =
 

s
s2  +  3s  + 10

,

y análogamente obtenemos las demás ganancias,

G12�s� = 

2
s2

3
s

10
s2

1+      +       
 = 

2
s2  +  3s  + 10

,

G21�s� = 
3
s

10
s2

1+      +       

5
s2

−

 

= − 
−5

s2  +  3s  + 10
,

G22�s� = 
1+      +       

3
s

10
s2

�1 +     �
3
s

1
s

 

= 
�s + 3�

s2  +  3s  + 10

Introducción a las matrices de estado
El método de variable de estado se utiliza para describir, 

con un sistema de ecuaciones diferenciales de primer orden, a 
un sistema lineal o no lineal variante o invariante en el tiempo. 
Este método ha sido utilizado desde hace mucho tiempo en la 
descripción de sistemas dinámicos.

Definición de ecuación de estado
Se denomina variable de estado al conjunto linealmente in-

dependiente de variables que se utiliza para especificar el esta-
do de un sistema cuyo estado se describe mediante un número 
finito de variables de estado, este sistema se conoce como sis-
tema finito. La ecuación de estado debe formularse de tal modo 
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que si se obtiene el valor del sistema en un instante dado (con-
dición inicial) junto con los valores de las variables de entra-
da para ese momento y para toda t, entonces la disposición del 
sistema y de estas variables se podrá determinar su valor para 
cualquier otro momento t, la solución del sistema. La forma ma-
tricial de la ecuación de estado es:

x'�t� = Ax�t� + Bu�t�, 				             (37) 

donde: 
x�t�: Es el vector de estado, 
A : Matriz de coeficientes de n x m.
u(t): Es el vector de entrada o de excitación.
B : Matriz de distribución n x m.
La ecuación de estado se escribe de la forma:

x'1

x'2

.

x'n

a11

a21

.

an1

a12

a22

.

an2

a1n

a2n

.

ann

.

.

.

.

b11

b21

.

bn1

b12

b22

.

bn2

a1m

a2m

.

anm

.

.

.

.

x1

x2

.

xn

u1

u2

.

un

=		     	           +

(38)

Ecuación de estado de una ecuación diferencial o de un 
sistema de ecuaciones diferenciales

Una ecuación diferencial ordinaria de orden “n”, con coefi-
cientes constantes, se puede expresar como una ecuación de es-
tado. Este proceso de transformación se describe en el Ejemplo 
n° 8 a continuación. 

Ejemplo 8
Dada una ecuación diferencial con coeficientes constantes:

2x''' − 6x'' + 4x' + 10x = e−3tμ�t�   
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x�0� = 1,  x'�0� = 2,  x''�0� = −2
Primer paso: se despeja la derivada de mayor orden.

x''' = 
e−3tμ�t�

3
+ 3x'' − 2x' − 5x 

Segundo paso: se efectúan cambios de variables en la for-
ma indicada a continuación. Se puede usar la letra que se de-
see, siempre y cuando no sea igual a la letra de la variable de la 
ecuación diferencial.

z1 = x
z2 = z'1
z3 = z'2

z'3 = 
1
2

 e−3tμ�t� + 3z3 − 2z3 − 5z1

Tercer paso: se construye la matriz de estado usando las 
ecuaciones anteriores.

 =		                +	 e−3tμ�t�    z�0�=

z'1

z'2

z'3

z1

z2

z3

0

0

1/2

1

2

−2

0

0

−5

1

0

−2

0

1

3

Esta forma matricial representa la ecuación de estado de la 
ecuación diferencial dada.

Ahora ilustraremos el método para el caso de un sistema de 
ecuaciones diferenciales con coeficientes constantes.

Ejemplo 9
Dado el sistema de ecuaciones diferenciales ordinarias:

x''  − 3y' − 5x' − 6y  = f1�t�
y''  − 5x' − 3y' + 8x − y = f2�t�

Para este caso se sigue el procedimiento anterior, sólo que se 
debe realizar dos veces. 
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x'' = f1�t� + 3y' + 5x' + 6y
y'' = f2�t� + 5x' + 3y' − 8x + y 

Los cambios de variables a ejecutar son los siguientes:
z1 = x
z2 = z'1
z2 = z'2
z'2 =  f1�t� + 3w2 + 5z1 + 6w1

w1 = y

w2 = w'1
w'2 =  f2�t� + 5z2 + 3w2 − 8z1 + w1

La matriz de estado queda de la forma:

z'1

z'2

w'1

w'2

0

5

0

−8

1

0

0

5

0

3

1

3

0

6

0

1

0

1

0

0

0

0

0

1

z1

z2

w1

w2

=		     	           +
f1�t�

f2�t�
�         �

La ecuación de estado y el gráfico de flujo de señal
La ventaja de utilizar las ecuaciones de estado radica en el 

hecho de que es muy fácil representar una ecuación de estado 
mediante un gráfico de flujo de señal y, por consiguiente, cal-
cular la ganancia del sistema; ahora describiremos el proceso.

Ejemplo 10
Dado la siguiente matriz de estado:

x'1

x'2

x1

x2

0

1

−6

−5

−1

3
=		          + f �t�
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Tome a x2 como variable de salida y siga el siguiente proce-
dimiento.

Primer paso: se escriben las ecuaciones matriciales:

x'1 = − 6x2 − f �t�

x'2 = x1 − 5x2 + 3 f �t�

Segundo paso: se aplica transformada de Laplace a ambos 
lados de las ecuaciones:

sx1�s� = −6x2�s� − f �s�

sx2�s� = x1�s� − 5x2�s� − 3f �s�

x1�s� = − 
1
s  

6x2�s� − 
1
s

  f1 �s�

x2�s� = 
1
s  

x1�s� − 
5
s

 x2�s� + 
3
s  

f �s�

Tercer paso: construir el gráfico de flujo de señal:

Ejemplo 11
Considere el sistema de doble entrada y doble salida, cuyas 

ecuaciones de estado son las siguientes:

x'1 = −2x1 + x2 + 5x3  + 10R2 

x'2 = −3x2 + 2x3

X1�s� X2�s�

1/s1/s

−5

−6

−1

3

f�s�
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x'3 = −4x2 + 2R1 
donde las salidas del sistema son:

y'1 = 8x1 + 6x2

y'2 = 4x1 + 3x2

Tome como variable de salida a x1.
En este ejemplo usamos las definiciones de variables de sa-

lida y la salida del sistema, el primer término x1 representa el 
nodo final de la trayectoria directa o trayectorias directas que 
tiene el gráfico de flujo de señal del sistema. Como el nodo x1 
representa una variable del sistema, entonces esta variable re-
presenta la salida de todos los caminos del gráfico de señal. Es 
posible encontrar sistemas que tienen varias variables de sali-
das y estas pueden formar parte de la salida o salidas del sis-
tema. En segun)(do término, la salida del sistema puede estar 
representada por una sola variable de salida o por las sumas 
algebraicas de las variables que conforman el sistema, forman-
do una transformación lineal, las cuales son operaciones de su-
mas algebraicas de señales entrantes que generan una señal de 
salida.

 Siguiendo el procedimiento anterior se obtiene el siguiente 
gráfico de flujo de señal:

Obsérvese que la variable de salida del sistema es x1 y las 
salidas del sistema son y1, y2 que son transformaciones lineales 
de x1, x2, x3.

Y2�s�

Y1�s�

X3�s� X2�s� X1�s�

R2�s�

R1

1/s 1/s 1/s

6

-2

-3

-3 10

4

2

-4

5

8
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PROBLEMAS

1.	 Determine el diagrama de bloque y el gráfico de flujo se 
señal de las siguientes ecuaciones diferenciales y sistemas de 
ecuaciones diferenciales. Donde las variables y(t), x(t), r(t), son 
las variables de salida, entrada y excitación, respectivamente, 
del sistema.

y''' + 2y'' + 5y' + 6y = 3r' + r

yiv + 10y'' + y' + 5y = 5r

y''' − 10y'' + 2y' + y + 2  ∫     
t

0
  y�τ�dτ = r' + 2r

2y'' + y' + 5y = r�t − 1� + r

�
3y'' − 6x' − 3y' − 2x = e−2t

x'' − 5y' + 4x' − 6y = e−3t

y'' + 2y' + 4y' = 3sen�5t�

y'' + 2y' + 6y = 4sen�2t� + 3cos�3t�

�
y'' + 2y' + 3x = r1�t� + r2�t�

x'' + 3y' − 4x + y = r2�t� + r'1

2.	 De las ecuaciones diferenciales y los sistemas de ecuaciones 
diferenciales del problema anterior, determinar las ecuaciones 
de estado que representan estos sistemas.

3.	 Determine la ganancia de los sistemas usando algebra de 
bloque y luego compruebe usando la fórmula ampliada de 
Mason.
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3.1   

3.2  

3.3

5

∫

2
2

∫∫

3

R1

C2

C1

R2

+
+ +

+

+ +

−−

−

G1�s�

G4�s�

G8�s�

G5�s�

H2�s�

G9�s�

G2�s�

G6�s�

G3�s�

G1�s�

+

+ +

+

++
−

−

G7�s�

R1�s� Y1�s�

Y2�s�R2�s�

5

∫

2

∫

∫

43

∫

R2 C2

R1 C1

− −

−
+

+ + +
+

+
+
+
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3.4  

3.5. En los siguientes diagramas de flujo de señal determine 
la ganancia del sistema. 

5

2

∫∫R1

C2

C1

R2 ∫ ∫

3 4

+
+ +

+

++ +

−

−

−

−H2�s�

−H2�s�

G1�s� G2�s�
G6�s�

G5�s�
G3�s� G4�s�

Y1�s�

Y2�s�

R1�s�

R2�s�
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x'1

x'2

x1

x2

2

1

−3

−2

1

0

0

1

e2t

μ�t�
=		          +

x'1

x'2

x1

x2

2

−4

1

2

te2t

e2t
=		          +

x'1

x'2

x1

x2

−4

2

2

−1

−1

2
=		          + μ�t�

4. Determine el gráfico de flujo de señal para los sistemas ex-
presados en diagrama de estado, considere las condiciones ini-
ciales cero.  

4.1 

4.2  

4.3 

H2

G1
G2 G3

G6 G7 G8

G4

Y�s�R�s�

G5

H6

L3

L1

H3

H7

L4

L2
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x'1

x'2

x1

x2

0

1

−2

−2

−3

1
=		          + μ�t�

x'1

x'2

x1

x2

0

−2

1

−3

0

1
=		          + μ�t�

=		                +	 μ�t�

x'1

x'2

x'3

x1

x2

x3

−1

0

1

−2

0

0

−2

0

−3

0

1

−4

=		                +	 μ�t�

x'1

x'2

x'3

x1

x2

x3

0

1

2

0

0

−6

1

0

−1

0

1

−6

4.4

4.5 

4.6

4.7
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Introducción
Una de las tareas más importantes en el análisis y diseño 

de sistemas de control es el modelar matemáticamente los 
sistemas físicos. Los dos métodos más comunes para modelar 
sistemas lineales son el método de la función de transferencia 
y el método de variable de estado. La función de transferencia 
es válida sólo para sistemas lineales invariantes en el tiempo, 
mientras que las ecuaciones de estado son aplicadas a sistemas 
lineales y no lineales.

Aunque el análisis y diseño de los sistemas de control lineal 
han sido bien desarrollados, su contraparte, los sistemas no li-
neales son usualmente muy complejos, por lo tanto los inge-
nieros de sistemas de control con frecuencia tienen necesidad 
de determinar cómo describir de manera precisa a un sistema 
matemáticamente, pero es más importante aún hacer conside-
raciones y aproximaciones de manera apropiada, cuando sea 
necesario, para que los sistemas puedan ser realmente descri-
tos por modelos matemáticos lineales.

El principal objetivo de este capítulo será mostrar los mo-
delos matemáticos de los sistemas de control y sus componen-
tes, los cuales son pasos fundamentales en el análisis de los 
sistemas de control. El modelado nos permitirá el detalle de 
los elementos que conforman un sistema y la naturaleza de su 
funcionamiento con el objeto de brindar facilidad en el análisis 
y diseño de sistemas de control, el cual mostraremos en la me-

CAPÍTULO 4

MODELOS MATEMÁTICOS DE SISTEMAS 
FÍSICOS
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todología a aplicar en este proceso.

Metodología para el análisis y diseño de un sistema de 
control
Los pasos a seguir para el análisis y diseño de un sistema de 
control son:

1.	 Estudio preliminar del problema o situación tomando en 
cuenta como funciona en la actualidad, las dificultades, li-
mitaciones (desempeño), características de operación, as-
pectos del sistema que se puede aprovechar.

2.	 Determinar los parámetros y requerimientos para una ópti-
ma operación del sistema, lo cual estará definido de acuer-
do a las exigencias o necesidades a satisfacer.

3.	 Análisis y selección de la tecnología (circuitos, compensa-
dores, sensores, sistema supervisorio, etc.) existente en el 
mercado con la finalidad de comparar las versatilidades de 
los fabricantes y seleccionar la que más se ajuste a los pa-
rámetros y requerimientos establecidos en la fase anterior.

4.	 Diseño de la arquitectura del sistema, con el objeto de es-
quematizar la construcción del modelo o prototipo para fa-
cilitar el análisis su comportamiento.

5.	 Propuesta del sistema. En esta fase se muestra el sistema  
usando la arquitectura diseñada y la tecnología diseñada 
para su construcción y prueba final.

6.	 Verificación de su funcionamiento aplicando el método de 
análisis (Pruebas de sistema).

Para el estudio detallado del modelado de los sistemas eléc-
tricos, mecánicos y electromecánicos nos basaremos en las le-
yes del movimientos y las leyes circuitales, las cuales forman 
parte del primer y segundo paso de esta metodología para el 
análisis y diseño de un sistema de control.
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Modelado de sistemas eléctricos
La manera clásica de escribir ecuaciones en los circuitos 

eléctricos se atribuye a las dos leyes de Kirchoff y la manera 
moderna de representar estas ecuaciones circuitales, utilizan-
do el método de variable de estado, para ello es necesario cono-
cer el modelo matemático de cada uno de los componentes de 
un circuito eléctrico, a continuación se describe:

1.	 La resistencia eléctrica
Según la Ley de Ohm el modelo matemático sobre el voltaje 

que produce una resistencia cuando pasa una corriente a través 
de ella es V = R expresado en voltios (v) y por consiguiente la 

resistencia es R = 
V
I

  expresada en Ohmios (Ω) (véase en la Fi-

gura n° 23).

2.	 La inductancia
Según Joseph Henry (1797-1878) y Michael Faraday (1791-

1867), el voltaje aplicado a una bobina o inductor es directa-
mente proporcional a la razón de cambio respecto al tiempo de 
la corriente que fluye a través de este elemento o dispositivo-

circuital, lo cual expresa su modelo matemático como VL = 

diL

dt
, 

véase en la Figura n° 24.

Fig. 23. La resistencia.

vvr

+

−

v = Ri
i

(39)
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El capacitor
Según Michael Faraday (1791-1867) un voltaje aplicado a 

placas paralelas da por resultado un campo eléctrico entre ellas 
y la corriente que fluye es directamente proporcional a la razón 
de cambio respecto al tiempo del voltaje del dispositivo circui-

tal y su modelo matemático queda expresado por Ic=  
dVC

dt
 véa-

se en la Figura n° 25.

El amplificador operacional
El Amplificador operacional usualmente llamado (Op Amp), 

es un dispositivo con dos terminales de entrada, denominados 
+ y – o bien entrada no inversora y entrada inversora, respecti-
vamente. El dispositivo se conecta además a una fuente de co-
rriente continua (+Vc y −Vc), la referencia común para las entra-
das, la salida y la fuente de alimentación se encuentra fuera del 

Fig. 25. El capacitor.

vr

+

−

i = C dv
dt

i

     Fig. 24. La bobina o inductor.

v

+

−

vvr

+

−

v = L di
dt

i

(40)
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amplificador operacional se denomina tierra (−Vc ), la tensión 
de salida depende de la diferencia de potencial en las entradas, 
despreciando los efectos capacitivos, el modelo matemático 
para el caso inversor es el mostrado en la Figura n° 26 es:

V2

V1

R2

R1

= −

Fuentes de voltajes y corrientes
Las fuentes de corrientes y de voltajes serán consideradas 

entradas a los circuitos y pueden ser independientes o depen-
dientes, a continuación se muestra: 

Fig. 27. Fuentes independientes.

+
−vs is

Fig. 26. Amplificador operacional.

+
− v1

R1

R2

B

A v2
− +

+

−

(41)



104 Capítulo 4. Modelos matemáticas de sistemas físicos.

Usando los modelos matemáticos de cada uno de los com-
ponentes y usando las leyes circuitales de Kirchoff, podemos 
determinar el gráfico de flujo de señal y la ganancia del sistema, 
partiendo de la linealización de las ecuaciones diferenciales del 
circuito, en otras palabras las ecuaciones de estado de los siste-
mas eléctricos dados, esta es una forma moderna y efectiva de 
determinar la ganancia de estos sistemas.

Ejemplo 1
Determine la matriz de estado y el gráfico de flujo de señal 

del circuito mostrado en la Figura n° 29.

Primer paso: se aplica las leyes circuitales de Kirchoff para 
encontrar las ecuaciones diferenciales que representan el cir-
cuito, tomando como variables de estado iL, Vc .

Fig. 28. Fuentes dependientes.

+
−3VA 3I2

Fig. 29. Circuito RCL.

+
−

Vs

R L

C

i�t�
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LKV: −VS + RiL + L 
diL

dt
 + VC = 0

LKC: iL = 
dVC

dt
 

Segundo paso: se despeja las derivadas 
diL

dt
, 

dVC

dt  
de las ecua-

ciones dadas:

diL

dt
 = 

VS

L  
− R 

iL

L  
− 

VC

L

Tercer paso: construir la matriz de estado.

=		               +             VS

i'L

V'C

iL

VC

−
R

L

1

C

−
1

L

0

1

L

0

Cuarto paso: construir el gráfico de flujo de señal.

1/S 1/SVs
Vc(s)i(s)

-1/L

i(0) Vc(0)

1/S 1/S

1/C

-R/L

1/L

Vc�0�i�0�

i�s�

1/s1/s

1/s 1/s1/C

-R/L

-1/L

1/L
Vc�s�

Vs
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Quinto paso: ganancia del sistema.
Considerando las condiciones iniciales cero, la ganancia 

aplicando la fórmula ampliada de Mason es:

G�S� = 

1
LC

s2 +      S +       
R
L

1
LC

1
LCs2 + RCS  + 1

=

Ejemplo 2
Determine la matriz de estado del circuito mostrado en la 

Figura n° 30.

Siguiendo el procedimiento anterior obtenemos:
Primer paso:

I = IL + IC

−Vs + R1I + L 
dIC

dt
 = 0

−L 
dIL

dt  
+ L2 IC + Vc = 0

Segundo paso: se combinan las ecuaciones anteriores de la 
siguiente forma:

Fig. 30. Circuito eléctrico combinado.

+
−

Vs C

R2
R1

L
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I = IL + C 
dVc

dt

−Vs + R1�IL + C 
dVC

dt
� + R2C 

dVC

dt  
+ Vc = 0

dVC

dt
 = 

Vs

C�R1 + R2� 
− 

R1

C�R1 + R2�
IL − 

Vc

C�R1 + R2�

Así mismo, 

L 
dIL

dte
 = R2C 

dVC

dt  
+ Vc,     L 

dIL

dt
 

              = R2 �
VS

R1 + R2

�− R1 R2 
IL

R1 + R2

− R2 
VC

R1 + R2

+ VC

De donde,
dIL

dt
 = 

R2

L�R1 + R2�
Vs  −

R1 R2

L�R1 + R2�
IL + 

R1

L�R1 + R2� 
Vc

Tercer paso: matriz de estado.

=		                                        +                              �VS�
I'L

V'C

IL

VC

−R1 R2

L�R1 + R2�
R1

L�R1 + R2�

R1

C�R1 + R2�
1

C�R1 + R2�

R2

L�R1 + R2�

1
C�R1 + R2�
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Cuarto paso: construir el gráfico de flujo de señal.
Dejamos al lector el cálculo de la ganancia a partir del gráfico 

de flujo de señal, el cual se resuelve de manera análoga al del 
Ejemplo 1.

S
1

)( 21

2

RRL
R
+

)( 21

1

RRL
R
+

)( 21

21

RRL
RR
+

−

)(
1

21 RRC +

 

)(
1

21 RRC +
 

S
1

Vs Vc(s)

Modelado de sistemas mecánicos
La mayoría de los sistemas de control los elementos mecáni-

cos son tan buenos como los componentes eléctricos. Algunos 
sistemas mecánicos tienen elementos hidráulicos y neumáticos. 
Desde el punto de vista matemático las ecuaciones que descri-
ben los elementos eléctricos y mecánicos presentan analogías, 
de hecho el movimiento de los elementos mecánicos pueden 
describirse en varias dimensiones, traslacional y rotacional o 
combinación de ambos. Las ecuaciones que rigen los sistemas 
mecánicos de movimiento son a menudo formulados por la ley 
de movimiento de Newton.

∑ F = ma						              (42)
Usando esta ley, podemos formular las ecuaciones que des-

criben cada elemento que conforman un sistema mecánico. A 
continuación mostramos.

Sistemas mecánicos traslacionales

a.	 La masa: se considera un elemento que almacena energía 
cinética en el movimiento traslacional, observe la Figura n° 
31.
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b.	 El amortiguador: representa un elemento de fricción vis-
cosa y una relación de retardo entre la fuerza aplicada y la 
velocidad, la expresión de su modelo matemático es:

F = β 
dx

dt
,					                             (44)

donde β representa el coeficiente de fricción viscosa.

c.	 Resorte lineal: representa un elemento de respuesta lineal 
o proporcional a la fuerza que se aplica sobre él, se puede 
considerar como un elemento mecánico que actúa como 
una correa, cable o resorte, el cual almacena energía poten-
cial. La expresión matemática es: 

β

x

Fig. 32. Modelado del amortiguador.

k
	 F= kx         (45)

Fig. 33. Modelado del resorte.

Fig. 31. Modelado de la masa. 

f = 
d2x

dt2
      (34)

M
f�t�

x
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d.	 La fuerza de fricción: representa una relación de retardo 
entre la fuerza aplicada que tiene una constante β de ampli-
tud con respecto al cambio de velocidad. La expresión de su 
modelo matemático es:

F = β  
dx

dt
                    				             (47)

e.	 Fuerzas externas: estas fuerzas son las responsables 
del movimiento del sistema mecánico, las cuales pueden 
ser motores, palancas y manillas, las cuales quedan 
representadas por f�t� en el diagrama del sistema.

Ejemplo 3
Determinar las ecuaciones dinámicas y la matriz de estado 

del sistema mecánico traslacional mostrado. 

Fig. 34. Modelado de la fuerza de fricción.

x

β

M

β1

f�s�

β2

k2

k1 M

x

Fig. 35. Sistema mecánico de traslación del Ejemplo 3.
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Primer paso: aplicar la ley de Newton de movimiento a la 
masa para determinar la ecuación dinámica del sistema, para 
ello sólo se deben identificar todos los elementos mecánicos 
opositores al movimiento. Seguidamente, escribir la ecuación 
tomando todas las expresiones de cada uno de los componen-
tes mecánicos identificados previamente como negativos y las 
fuerzas externas que generan el movimiento como positivas. La 
ecuación dinámica de este sistema es:

  
k1x + β1 

dx

dt
 m 

d2x

dt2  
+ k2 x + β2 

dx

dt
 = f �t�

Segundo paso: despejar la derivada de mayor grado.

d2x

dt2
 = 

f�t�

m
 −  

�k1 + k2�

m  
x − 

�β1 + β2�

m  

dx

dt

Tercer paso: cambio de variable para linealizar la ecuación 
diferencial.

Z1 = x
Z2 = Z̅    1

Z �2 =  
f�t�

m
 − 

�k1 + k2�

m  
Z1 − 

�β1 + β2�

m
Z2

Cuarto paso: construir la matriz de estado.

0
1
m

=		                                        +              f �t�
Z �1

Z �2

Z1

Z2−                     −
�k1 + k2�

m
�β1 + β2�

m

0                   1
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Quinto paso: diagrama de flujo de señal.

Se deja al lector como ejercicio calcular la ganancia del sis-

tema 
Z1�s�

f�s�
.

	 Ejemplo 4
Determinar las ecuaciones dinámicas y la matriz de estado 

del sistema mecánico traslacional mostrado a continuación: 

Primer paso: aplicar la ley de Newton para determinar las 
ecuaciones dinámicas del sistema usando el procedimiento 
descrito en el Ejemplo 1, con la diferencia de que cuando ana-
licemos elementos mecánicos que se encuentren entre las dos 
masas, se escribirá una diferencia de desplazamientos en x, to-

Z2�s� Z1�s�

1/s 1/sf�s�

1
m

�β1 + β2�

m

�k1 + k2�

m

−

−

k3M2

x2

β1

β2

k2

k1 M1

x1

Fig. 36. Sistema mecánico de traslación del Ejemplo 4.

f�t�
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mando como positivo el desplazamiento de la masa analizada 
y negativa el desplazamiento de la otra masa sin analizar, en 
nuestro caso, para cuando analicemos la masa n° 1 el desplaza-
miento x1 es positivo y x2 será negativo y para cuando analice-
mos la masa n° 2 se invierten los signos.

Masa M1

k1x1 + β1 
d2x1

dt
 + m1 

d2x1

dt  
+ k2�x1 − x2� 

 + β2 
d�x1 − x2�

dt
 = f �t�  				    �1�

Masa M2

k3x2 + m2 
d2x2

dt2
 + β2 

d�x2 − x1�

dt  
+ k2�x2 − x1� = 0  	 �2�

Resolviendo y agrupando términos nos queda:

d2x1

dt2
 = 

f �t�

m1

 + 
k1 x2

m1

 + 
β2

m1  

dx2

dt
 

              − 
�k1 + k2�

m1

x1 − 
�β1 + β2�

m1  

dx2

dt2  		
�1�

d2x2

dt2
 = 

k2

m2  
x1 + 

β2

m2  

dx1

dt
 − 

�k3 + k2�

m2

x2 

                          − 
β2

m2  

dx2

dt
   

	            			 
�2�

	
Segundo paso: realizar las cambios de variables. 

Z1 = x1

Z2 = Z �   1
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1

21 )(
m

kk +−

2

32 )(
m

kk +−

1

21 )(
m

ββ +−

1

2

m
k

1

2

m
β

2

2

m
β

 f(s) 
1

1
m 1/s 1/s 1/s1/s2

2

m
k 2

2

m
β−

1

21 )(
m

kk +−

2

32 )(
m

kk +−

1

21 )(
m

ββ +−

1

2

m
k

1

2

m
β

2

2

m
β

 f(s) 
1

1
m 1/s 1/s 1/s1/s2

2

m
k 2

2

m
β−

1

21 )(
m

kk +−

2

32 )(
m

kk +−

1

21 )(
m

ββ +−

1

2

m
k

1

2

m
β

2

2

m
β

 f(s) 
1

1
m 1/s 1/s 1/s1/s2

2

m
k 2

2

m
β−

 Z �2 =  
f�t�

m1

 + 
k2

m1  
W1+ 

β2

m1 
W2 

             − 

�k1 + k2�

m1  
Z1 − 

�β1 + β2�

m2

Z2

W1 = x2

W2 = W�    1

W�  2 =  
k2

m2

 Z1 + 
β2

m2  
Z2 − 

�k2 + k3�

m2  
W1 − 

β2

m2  
W2

 

Tercer paso: construir la matriz de estado.

=		                                                                   +             f �t�

Z �1
Z �2

W� 1

W� 2

Z1

Z2

W 1

W 2

0                  1 	        0                0

0                   0 	        0	          1
�k2 + k3�

m2

k2

m2

β2

m2

β2

m2

−�k1 + k2�

m1

�β1 + β2�

m1

k2

m1

β2

m1

0

0

0

1
m1

Cuarto paso: gráfico de flujo de señal.

−

− −
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Sistemas mecánicos de rotación 
Los sistemas rotacionales son análogos a los sistemas tras-

lacionales (las ecuaciones son de la misma naturaleza o forma), 
se usa el mismo procedimiento para determinar las ecuaciones 
dinámicas del sistema. Los tres elementos que usaremos en los 
sistemas rotacionales se describen a continuación.
a.	 El primer elemento es el momento de inercia, el cual es 

definido por la ecuación:

τ�t� = J 
d2θ

dt2
 = J 

dw�t�

dt
 				            (48)

donde τ�t� es el torque o par aplicado, J es el momento de iner-
cia, donde θ es el ángulo de rotación, y w�t� es la velocidad an-
gular. La ecuación (48) es análoga a la de masa en un sistema 
traslacional, bastará con sustituir τ�t� por f �t�, m por J y θ por 
x, tal como es mostrado en la Figura n° 37.

b.	 El amortiguador es el segundo elemento, el cual está 
definido por la ecuación:

τ�t� = β 
dθ

dt
  					             (49)

donde β, representa el coeficiente de amortiguamiento o de 
fricción y donde θ es el ángulo de rotación, como se muestra en 
la Figura n° 38.

Fig. 37. Momento de inercia.

θ1

J1

τ1
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El resorte rotacional: este representa el tercer elemento ro-
tacional, el cual esta definido por la ecuación:

τ�t� = kθ						              (50)

donde k representa la constante de elasticidad del resorte y θ es 
el ángulo de rotación, como se muestra en la Figura n° 39.

Además de estos elementos principales, se debe incorporar 
otro elemento no menos importante y muy usado en la indus-
tria y en los sistemas mecánicos tradicionales como lo son los 
engranajes, el cual está definido por las siguientes ecuaciones:

N1

N2

 = 
T1

T2

 						             (51)

y 
N1

N2

 = 
θ2

θ1

, 					             (52)

donde N1 y N2 representan el número de dientes de cada engra-
naje, T1 y T2 son sus torques o pares mecánicos respectivos, los 
cuales son ilustrados en la Figura n° 40.

  Fig. 39. El resorte rotacional.

Fig. 38. Amortiguador.

β

τ ϴ

k

ϴ
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Fig. 40. Los engranajes.

Ejemplo 5
Determinar las ecuaciones dinámicas y la matriz de estado 

del sistema mecánico rotacional mostrado a continuación.

Primer paso: determinar las ecuaciones dinámicas, siguien-
do de manera análoga el procedimiento de análisis de masas 
descrito en los sistemas de traslación.

Masa J1

T�s� = J1 
d2θ1

dt2
+ k1 �θ1 − θ2�

Masa J2

k1�θ2 − θ1� + k2θ2 + J2 

d2θ2

dt2
 = 0

d2θ1

dt2
 = 

T

J1  
+ 

k1

J1  
θ2 −  

k1+ k2

J1  
θ1

  Fig. 41. Sistema rotacional del Ejemplo 5.

θ2

J2
k2k1

θ1

J1

T1�s�

T2 

T1
N1 

N2 
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		 d2θ2

dt2
 = 

k1

J2  
θ1 − 

�k1 + k2�

J2  
θ2

Segundo paso: realizar cambios de variables.

Y1 = θ1

Y2 = Y �1

Y�2 = 
T

J1  
+ 

k1

J1  
X1 − 

k1

J1  
Y1

X1 = θ2

X2 = X �1
X�2 = X �1

X�2 = 
k1

J2  
Y1 − 

�k1 + k2�

J2  
X1

Tercer paso: construir la matriz de estado.

=		                                                          +             T

Y�1
Y�2
X�1
X�2

Y1

Y2

X 1

X 2

0

0

0

1
J1

10 0 0
k1

J1

k1

J1

− 0 0

0 100
k1

J2

�k1 + k2�
J2

−0 0

Se deja como ejercicio realizar el cálculo de la ganancia del 
sistema rotacional.

Ejemplo 6
Determine la matriz de estado del sistema mecánico de ro-

tación mostrado.
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Siguiendo el proceso explicado en el ejemplo anterior, ana-
lizamos J1.

T�s� = J1 
d2θ1

dt2
+ k1 �θ1 − θ2�

de donde;
d2θ1

dt2
 = 

T

J1  
+

k1θ2

J1

 −
 

k1θ1

J1

Luego analizamos el engranaje y J2.

k1�θ2 − θ1� + T1 = 0

k1θ2 − k1θ1 + T1 = 0

T2�s� = J2 
d2θ3

dt2
+ k2θ3 + β 

dθ3

dt

Luego,

n1

n2

 = 
T1

T2

,   
n1

n2

 = 
θ3

θ2

,	  θ3 = 

n1

n2 
θ3,  T1 =  

n1

n2  
T2 

k1θ2 − k1θ1 + J2�
n1

n2

�
2

 
d2θ2

dt2
  + k �

n1

n2

�
2

 θ2 + β �
n1

n2

�
2 dθ2

dt
 = 0

Realizamos cambio de variables para construir la matriz de 
estado:

θ1

θ3

θ2
β

J1

T

J2

k1

k2

T2 

T1N1 

N2 

  Fig. 42. Sistema rotacional del Ejemplo 6.
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x1 = θ1		  y1 = θ2

x1 = x �1		  y1 = y�1

y�2=                    x1 −                                  y1             y2

J2�
n1

n2

�
2

k1 β
J2

−

J2�
n1

n2

�
2 

�                        �k3�
n1

n2

�
2 

+ k1

x �2 = 
T

J1  
+ 

k1

J1  
y1 − 

k1

J1  
x1

=		                                                                     +             T

x �1
x �2
y�1
y�2

x1

x2

y1

y2

0

0

0

1
J1

10 0 0
k1

J1

k1

J1

− 0 0

0 100

k1 −0

J2�
n1

n2

�
2

k3�
n1

n2

�
2 

+ k1

J2�
n1

n2

�
2 

β
J2

−

La matriz de estado queda representada como:

d2θ2

dt2
=                    θ1 −                                 θ2 

J2�
n1

n2

�
2

k1 β
J2

−

J2�
n1

n2

�
2 

�                        �k3�
n1

n2

�
2 

+ k1

dθ2

dt
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Sistemas electromecánicos
La corriente eléctrica y el campo magnético interactúan de 

dos maneras particularmente importantes. Para comprender 
la operación de la mayoría de los sistemas electromecánicos se 
deben considerar dos aspectos, el primero consiste en que si 
una corriente i amperios circula a través de un conductor de 
longitud L metros y además éste es colocado en un campo mag-
nético B Tesla que forme un ángulo recto respecto a la corrien-
te, entonces existe una fuerza generada en el conductor queda 
expresada en magnitud en Newton por la ecuación:

F = Li Newtons					              (53)

Esta ecuación es la base de la conversión de energía eléctrica 
en trabajo mecánico y es llamada Ley de Motores.

El segundo es la relación electromecánica importante. Con-
siste en el efecto mecánico de movimiento en voltajes eléctri-
cos. Si un conductor de longitud L metros se mueve en un cam-
po magnético B Tesla a una velocidad v en metros por segundos 
y mutuamente forman un ángulo recto (B y v), entonces el vol-
taje generado en el conductor queda expresada en magnitud en 
la ecuación:

e�t� = BLv Voltios				             (54)

Esta ecuación es llamada la Ley de Generadores.
Ahora bien, analizaremos motores de corriente continua 

para los casos generador por corriente de campo y motores de 
corriente de armadura. 

Generador corriente directa (CD)
Un generador CD puede ser usado como un suplidor de po-

tencia, en el cual la potencia requerida para excitar el circuito 
de campo es más baja que el índice potencia de salida del circui-
to de armadura, el voltaje eg inducido en el circuito de armadura 
es directamente proporcional al flujo magnético ϕ, producido 
por el campo y la velocidad de rotación w, en la armadura ex-
presada como:
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eg = K1ϕw					              (55)

El flujo en función de la corriente de campo y el tipo de ma-
terial usado. Hasta llegar a saturación, esta relación es aproxi-
madamente lineal, entonces el flujo es directamente proporcio-
nal a la corriente de campo:

ϕ = K2if						               (56)

eg = K1K2iwf					              (57)

Se considerara la velocidad del generador constante y la 
ecuación queda expresada:

eg = Kf if						               (58)

El modelo del generador se representa en la Figura n° 37, 
donde La , Ra , Rf , Lf son las resistencias e inductancia de arma-
dura y campo respectivamente.

Motores de corriente continua controlado por corrien-
te armadura (inducido) 

El troque o par desarrollado por el motor mostrado en la 
Figura n° 43, es proporcional a la magnitud del flujo ϕ, a la co-
rriente de campo if y a la corriente de armadura ia , si supone-
mos que la corriente de campo es constante, y esta es la encar-
gada de generar el campo, el que a su vez es el responsable de 
producir el flujo ϕ, entonces el flujo es aproximadamente cons-
tante, concluimos que el torque o par puede expresarse: 

Fig. 33. Diagrama esquemático del generador.

Rf

Lf+
− eg

Ra La

ZL
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					     T = Kpϕia	          (59)

					     T = Ka ia 	          (60)

Ahora bien, el voltaje generado en el devanado de la arma-
dura del motor, Vm puede ser escrito como: 

Vm = Kϕ dθ
dt 					              

(61)

Donde K es un parámetro del motor, ϕ es el flujo magnético y
dθ
dt

 es la velocidad angular, suponemos que el flujo magnético es 

constante, por lo tanto la ecuación queda:

Vm = Km dθ
dt

 					              (62)

La asunción del flujo es muy importante porque si el flujo es 
variable, entonces se convierte en una ecuación no lineal de dos 
variables, allí el análisis es mucho más complejo y engorroso 
por lo que la transformada de Laplace no puede ser usada para 
estos casos.

Motor de corriente continua controlado por corriente 
de campo

El motor de corriente continua por efecto de campo convier-
te energía eléctrica continua en energía mecánica, gran parte 
del par generado es utilizado para mover cargas externas, así 
mismo cabe destacar que de acuerdo a las características de 

Fig. 44. Motor de corriente de armadura.

Vm

J1

θ1τ1

+
−

+
−

ia La

Ra

Vi
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funcionamiento que este tipo de motor ofrece, como lo son la 
generación de un par elevado, controlabilidad de la velocidad 
en amplios rangos y adaptabilidad a diversos tipos de métodos 
de control, es la razón por la cual son ampliamente utilizados 
en sistemas de control, tales como los manipuladores robóticos, 
mecanismos de transporte de cintas y unidades de cintas entre 
muchos ejemplos que podemos citar. A continuación mostra-
mos en la Figura n° 45 un diagrama esquemático de un motor 
de corriente continua controlado por corriente de campo.

El voltaje de entrada se puede aplicar a los terminales de ex-
citación o a los del inducido. El flujo en el espacio libre en el 
motor es directamente proporcional a la corriente de excitación 
o de campo, siempre que el campo no esté saturado, de modo 
que:

ϕ = Kf if						               (63)

Se supone que el par desarrollado por el motor está relacio-
nado linealmente con ϕ y con la corriente del inducido, es decir:

Tm = K1 Kf if �t�ia �t�				             (64)

Es evidente que para mantener la proporcionalidad de la 
ecuación, la corriente de armadura sede ser constante, mien-

Fig. 45. Diagrama del motor CC controlado por corriente de campo.

Rf

Lf
Vi

+
−

La

J1

Ra
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tras que la corriente de campo es la generada por el voltaje de 
entrada, lo que proporciona una sustancial amplificación de po-
tencia. Entonces se tiene: 

Tm = Kf if �t�					              (65)

Ejemplo 7
Determine la matriz de estado del sistema electromecánico 

mostrado a continuación:

Primer paso: se aplica la ley circuital de voltaje de Kirchoff.
     

−Vi + Rf if + Lf  
dif

dt
 = 0

Segundo paso: se aplica la ley de Newton para encontrar las 
ecuaciones mecánicas. 

T = J
d2θ
dt2

 + Kθ + β 
dθ
dt

Tercer paso: se relacionan las ecuaciones circuitales y me-
cánicas, usando la ecuación n° 65.

T = Kf if  	 ⇒   if = 

T
Kf  

= 
J

Kf  

d2θ
dt2  

+ 
K
Kf  

θ + 
β
Kf  

dθ
dt

Rf

Lf
Vi

+
−

β
T

k
J

Ra

La

Fig. 46. Sistema electromecánico del Ejemplo 7.
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Cuarto paso: sustituimos la corriente de campo en la ecua-
ción circuital.

−Vi + Rf �
J

Kf  

d2θ
dt2  

+ 
β
Kf  

dθ
dt  

+ 
K
Kf  

θ� 

 + Lf 
d
dt

�
J

Kf  

d2θ
dt2  

+  
β
Kf  

dθ
dt  

+ 
K
Kf  

θ� = 0
		
	

−Vi + 
JLf

Kf  

d3θ
dt3  

+ �
Rf J + Lf β

Kf

� 
d2θ
dt2

 

 +�
Rf β + Lf K

Kf

�
 

dθ
dt  

+ 
K
Kf  

θ = 0

Quinto paso: construir la matriz de estado, usando los cam-
bios de variables.

x1 = θ

x2 = x �1
x �3 = x �2

x �3 = 
Vi

�       �
JLf

Kf

�Rf J + Lf β�
JLf

−
 
x3 − 

�Rf β + Lf K�
JLf  

x2− 
K
JLf 

x2

	

=		                                                                    +             Vi 

x �1
x �2
x �3

x1

x2

x3

0

0

kf

JLf

0                

1

K

JLf

0                

1

�Rf β + Lf K�
JLf

0                

1

�Rf J + Lf β�
JLf

− −
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Ejemplo 8
Determine la matriz de estado del sistema electromecánico 

mostrado a continuación:

Primer paso: se aplica la ley circuital de voltaje de Kirchoff.

−Vi + Ra ia + La  
dia

dt
 +Vm  = 0 

Segundo paso: se aplica la ley de Newton para encontrar las 
ecuaciones mecánicas.

T = J
d2θ
dt2  + Kθ 

Tercer paso: se relacionan las ecuaciones circuitales y me-
cánicas, usando las ecuaciones n° 59, 60, 62.

T = Ka ia  	⇒   ia = 

T
Ka  

= 
J

Ka  

d2θ
dt2  

+ 
K
Ka  

θ

 Vm = Km 
dθ
dt

Cuarto paso: sustituimos la corriente de campo en la ecua-
ción circuital.

−Vi + Ra �
J

Ka  

d2θ
dt2  

+ 
K
Ka  

θ� + La 
d
dt

�
J

Ka  

d2θ
dt2  

+ 
K
Ka  

θ�

RA

LA+
−

Vm

Vi

+
−

ϴ
T

k
J

Fig. 47. Sistema electromecánico del Ejemplo 8.
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 + Vm = 0

−Vi + La 

J
Ka  

d3θ
dt3  

+ 
�Ra J�

Ka

 
d2θ
dt2

 +
La K
Ka

 
dθ
dt  

+ 
Ra K
Ka  

θ = 0

Quinto paso: construir la matriz de estado usando los cam-
bios de variables.

x1 = θ

x2 = x �1
x �3 = x �2

x �3 =
 

Ka

JLa 
Vi − 

Ra

La  
x3 − 

K
J  

x2 − 
Ra K
JLa  

x1

=		                                           +                 Vi 

x �1
x �2
x �3

x1

x2

x3

0                

0

Ra K

JLa

−

0                

1

Ra 
La

−

0                

1

K
J

−

0

0

ka

JLa

−

Sistemas análogos
Los sistemas que pueden representarse mediante el mismo 

modelo matemático, pero son diferentes físicamente se llaman 
sistemas análogos, el concepto de analogía es muy importante 
por las siguientes razones:
1.	 La solución de la ecuación que describe un sistema físico 

puede aplicarse a un sistema análogo en forma directa en 
otro campo.

2.	 Un tipo de sistema puede que sea más fácil de manejar que 
otro, en lugar de construir y estudiar un sistema mecánico, 
podemos construir un sistema análogo eléctrico que son 
más fáciles de manejar experimentalmente.
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Analogía mecánico-eléctricas 
Hay dos analogías eléctricas para los sistemas mecánicos; la 

analogía fuerza-voltaje y la analogía fuerza‒corriente.
Analogía fuerza-voltaje 
Sistemas Mecánicos Sistemas eléctricos

Fuerza (Par T) Voltaje e

Masa (m) (Momento de 
inercia J Inductancia L

Coeficiente de fricción 
viscosa β Resistencia R

Constante del resorte K Reciproco de Capacitancia 1/C

Desplazamiento x 
(desplazamiento angular θ) Carga q

Velocidad o Velocidad 
angular Corriente i

Ejemplo 9
Considere el siguiente sistema mecánico y el sistema eléctri-

co que se muestran a continuación:

La ecuación para el sistema mecánico es la siguiente:

m
 

d2x
dt2  

+ β 
dx
dt  

+
 
xk = f�t�

x

βk

M

f�t�

Fig. 48. Sistema análogos del Ejemplo 9.

R

e

L

Cl+
_
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En tanto la ecuación del sistema eléctrico es:

L
 

d2q
dt2  

+ R 
dq
dt  

+ 
q
C  

= e

Obsérvese que si comparamos las dos ecuaciones diferen-
ciales antes descritas para los sistemas eléctrico y mecánico, 
notamos que estas tienen las mismas características matemá-
ticas, por lo tanto concluimos que estos sistemas describen un 
comportamiento análogo.

Analogía fuerza-corriente 
Sistemas mecánicos Sistemas eléctricos

Fuerza (Par T) Corriente i

Masa (m) (Momento de 
inercia J Capacitancia C

Coeficiente de fricción viscosa 
β 

Reciproco de la 
Resistencia 1/R

Constante del resorte K Recíproco de la 
inductancia 1/L

Desplazamiento x 
(desplazamiento angular θ) 

Acoplamiento por flujo 
magnético ϕ 

Velocidad o Velocidad angular Voltaje e

Ejemplo 10
Consideremos el mismo sistema mecánico del Ejemplo 9, el 

sistema eléctrico mostrado a continuación:

Rls
_

L C

+

e

i2 ic

Fig. 49. Sistema eléctrico para el Ejemplo 10.
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La ecuación del circuito,

e
R  

+ il + C 
dVc

dt  
= is

El flujo ϕ esta relacionado con el voltaje mediante la ecua-
ción:

dϕ
dt  

= e;        					              (66)
  
sabiendo que il = 1

L  
∫ edt, ic = C de

dt

la ecuación circuital puede escribirse en función del flujo:

C d
2ϕ

dt2  
+ 1

R  
dϕ
dt  

+
 
1
L  

ϕ = is 

Ahora bien la ecuación del sistema mecánico del ejemplo an-
terior es:

m
 

d2x
dt2  

+ β 
dx
dt  

+
 
xk = f�t�

Encontramos que los dos sistemas son análogos.
Veamos ahora como usar estas analogías en la solución de 

sistemas mecánicos, basándonos en los conceptos desarrolla-
dos anteriormente, para la construcción de una red mecánica o 
modelo eléctrico equivalente, para ello utilizaremos un ejemplo 
sencillo que ha continuación ilustramos.

Ejemplo 11
Dibuje el modelo eléctrico equivalente o red mecánica del 

sistema mecánico mostrado:



132 Capítulo 4. Modelos matemáticas de sistemas físicos.

Para dibujar una red mecánica o analogía eléctrica, el pri-
mer paso es ubicar los desplazamientos x1 y x2 como nodos de 
referencia del circuito, todos los elementos de esta red deben 
ser conectados entre estos puntos. Como segundo paso se debe 
cumplir que sobre estos nodos la suma de todas las fuerzas 
debe ser igual a cero, la cual es análoga a la Ley de Kirchoff de 
corriente. Veamos cómo queda la red mecánica, la cual repre-
senta el modelo eléctrico equivalente.

Sistema de control de nivel de líquido

Fig. 51. Modelo eléctrico equivalente al sistema mecánico.

F�t�
β2

β3

K1 K2M1 M2
β1

Fig. 52. Sistema de tanques con interacción.

Tanque 1
Tanque 2H1

H2

q0

q1 q2

A2A1

R1 R2

k2M2

x2

β1

β2

β2

k1 M1

x1

f�t�

Fig. 49. Sistema eléctrico para el Ejemplo 11.
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Nomenclatura:	
	 q: Caudal.
	 H: Nivel.
         R: Restricción de válvulas.
	 A: Área de los Tanques.
Donde las ecuaciones quedan expresadas como: 

A1 

dh1

dt  
= q0 − q1					                     (67)

A2 

dh2

dt  
= q1 − qs					                     (68)

donde,

q1 = 

h1 − h2

R1

,	 qs =  

 h2

R2  

La analogía eléctrica queda expresada como:
		  q ↔ Corriente
		  h ↔ Voltaje
		  A ↔ Capacitancia
		  R ↔ Resistencia

El modelo eléctrico equivalente es:

Fig. 53. Modelo eléctrico equivalente para el sistema de control de nivel.

R1

R2q0

q1 q2

e

H1 A1 A2H2

+ +

− −



134 Capítulo 4. Modelos matemáticas de sistemas físicos.

Sistema de transmisión de correa
En la Figura n° 54 se muestra un sistema usado comúnmente 

en una computadora para mover lateralmente el dispositivo de 
impresión, está compuesta por transmisión de correa, el dispo-
sitivo de impresora puede ser una impresora láser, impresora 
de bola o térmica.

En la Figura n° 54 muestra el modelo propuesto de un sis-
tema de transmisión por correa, este modelo supone una cons-
tante de muelle k, el radio de la polea es r, la rotación angular 
del eje del motor θ y la rotación angular de la polea de mano 
derecha es θp. La masa del dispositivo de impresión m y su po-
sición es y�t�; el sensor de luz se utiliza para medir y; la salida 
del sensor es un voltaje V1; V1 = k1  y; el controlador proporciona 
un voltaje de salida V2 ; V2  está en función de V1. El voltaje V2 se 
conecta a la excitación del motor.

Se supondrá que se puede utilizar una relación lineal:
				  

V1 = −� k2 

dV1

dt  
+ k3 V1�

y se utilizará k2 = 0, 1, k3 = 0, la inercia del motor y la polea es J 
= Jmotor + Jpolea , la inductancia del campo es despreciable, a con-
tinuación procedemos a describir las ecuaciones dinámicas del 
sistema, obsérvese que y = rθp, por lo tanto la tensión:

T1 = k�rθ − rθp� = k�rθ − y�

Sensor
de luz 

Correa
Emisor de luz

Dispositivo 
de impresión

Polea

y�t�
Posición del 

dispositivo de 
impresión

Voltaje del 
motor

θ

Controlador

Motor CC

Fig. 54. Impresora por transmisión de correa.
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La tensión T2:

T2 = �y − rθ�

La tensión neta en la masa m:

T1 − T2 = m 

d2y
dt2

Luego,

T1 − T2 = k�rθ − y� − �y − rθ� = 2k�rθ − y�

 Ahora bien,

i = 
V2

R  
 	 y el troqué del motor,

Tm = km  

km

R  
V2

 El motor proporciona el par de transmisión de las correas 
más las perturbaciones no deseadas.

Tm = T +
 
Td

De donde,

T = J  

d2θ
dt  

+ β 
dθ
dt  

+ r� T1 +
 
T2�

Fig. 55. Modelo para la impresora de transmisión de correa.

1/s 2 1/s 1/s

- 4

5

- 3
- 2

6

8R2

R1

10

4

-3

x3(s) x2(s) x1(s)

Y1(s)

Y2(s)Y2�s�

Y1�s�

X3�s� X2�s� X1�s�

R2

R1
1/s 1/s 1/s

1/s 2 1/s 1/s

- 4

5

- 3
- 2

6

8R2

R1

10

4

-3

x3(s) x2(s) x1(s)

Y1(s)

Y2(s)Y2�s�

Y1�s�

X3�s� X2�s� X1�s�

R2

R1
1/s 1/s 1/s

m

Sensor
v1 = k1 y

T2 y

T1

θ

Controlador
v1 = -k2

dv1

dt

Motor
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 Tm = 
km

R  
V2,	 V2 = −k2  

dV1

dt
, V1 = y

Tm = −k1k2  

km

R   

dy
dt

		

Despejando las variables: 

d2θ
dt2

 = − 
k1k2km

JR   

dy
dt

 −  

β
J  

 
dθ
dt

−  
2kr2

J
 θ + 

2kr
J

y
 
+ 

Td

J
				  

d2y
dt2  

= 
2kr
m

θ − 
2k
m  

 y

Haciendo cambios de variables, para construir matriz de es-
tado, tenemos:

y = x1

x2 = x �1
θ = z1

z2 = z�1

x �2 =
 

2kr
m  

x1 

2kr
m  

z1

z2 = − 
k1k2km

JR   x2  −  

β
J  

z2 
− 

2kr2

J  
z1 +  

2kr
J  

x1 − 
Td

J

=		                                                          +             Td

x �1
x �2
z�1
z�2

x1

x2

z 1

z2

0

0

0

1
J

0
2kr
m

−

0
2kr

J

1

0

0
k1k2km

J
−

0
2kr
m
0

2kr2

J
−

0

0

1
β
J

−
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Transformación de modelos matemáticos usando 
Matlab

Si conocemos la función de transferencia de un sistema, po-
demos determinar la matriz de estado a cual pertenece dicha 

relación 
y�s�
x�s�  

= G�s�, veamos un ejemplo sencillo.

Ejemplo 11
Sea la función de transferencia: G�s� = 

s
s3 + 14s2 + 56s + 150

. 

Determine la matriz de estado usando MATLAB.
Se escribe en la Herramienta MATLAB:
> num=�0   0   1   0�;
>den=� 1   14   56   160�;
Representan los coeficientes de los polinomios numerador y 

denominador respectivamente, luego,
>�A,B,C,D�=tf2ss(num,den)
El resultado es el siguiente:
A=
	 -14	 -56	 -160
	  11	     0	        0
	     1		         1	     0
B=
	     1
	     0
	     0
C=
	     0	     1       	       0
D=
	     0
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Ejemplo 12
Sea la matriz de estado: 

=		                               +                  u�t�    y=�100�

x �1
x �2
x �3

x1

x2

x3

x1

x2

x3

0

25

−120

0                

1

−5 −25

0                

1

−5

0                

1

determine la función de transferencia 
y�s�
u�s�

 usando Matlab.

Se escribe en la herramienta Matlab:
>A=�0   1   0;   0   0   1;   -5    -25   -5�;
>B=�0;  25;  -120�
>C=�1   0   0�
>D=�0�;
>�num,den�=ss2tf(A,B,C,D)

El resultado se muestra a continuación;
num=
		  0.0000      0.0000     -25.0000    -245.0000
den=
		  1.0000	      5.0000     25.0000    5.0000
Luego;

Printsys=(num,den)

La corrida mostrará:

	  

num
den  

 
25s + 5

s3 + 5s2 + 25s + 5
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PROBLEMAS

1.	 Determine la matriz de estado y la ganancia del sistema 
para los sistemas eléctricos dados a continuación:

1.1

1.2

1.3

R1 R2

Vi
C1 C1+

−

R1 R2

Vi
C L+

−

R1 R2

Vi
CL+

−
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1.5

1.4

1.6

R

C1 Is C2 L

R1

R2

R3C

L

Vi
+
−

R1

i

R2

4i

R3

C

L

Vi
+
−
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2. Determine la matriz de estado y la ganancia del sistema 
en los sistemas mecánicos y electromecánicos mostrados a 
continuación.

2.1

2.2 

2.3

M2

x2

β2
β3

M1

β1 β4

x1

k2

k1

θ2 θ3θ1

J1 J2 J3k1 k2 k3

T1 

θ1 θ3

θ4

θ2
β

J1

J2

k1 k2

k3

T2 

T1
N1 

N2 



142 Capítulo 4. Modelos matemáticas de sistemas físicos.

2.4

2.5

2.6

R1

R2

C1

Vi
+
− +

−

R

L
J1

θ1
T

θ2

β

J2

k1

k2

T2 

T1
N1 

N2 

Vi

Vm

+
−

+
−

θ2

θ1T
β

J2

k1

k2

T2 

T1
N1 

N2 

La

Ra

R

R

Vi L
+
−
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 2.7

3. Determine el circuito equivalente o analogía eléctrica de los 
siguientes sistemas mecánicos mostrados.

3.1   

3.2

Tanque 1
Tanque 2

Tanque 3

H1

H2

H3

q0

q1 q2

qs

A2

A3

A1

R1 R2

B1 B2

f�t�

M1 M2 M3

k3

k1

B3

k4

k2

f�t�

k1
k3

B

k2

M1 = 1

xa

M2 = 1

xb = y
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3.3  

3.4 

4. Escriba las ecuaciones de estado de los sistemas mostrados 
a continuación, y luego construya el gráfico de flujo de señal, 
usando la nomenclatura indicada.

4.1

A1 A2

R3R1

R2

Tanque 1

h1

qA qB Tanque 2

q2

q1 q3

Tubería 1 Tubería 2

Tubería 3

h2

�a�

ia Carga
Engra-
najesKKs

Ra

Eje 
flexible

KLϴr ϴe

ϴ0

ϴ2

JL
Jm,Bm 

e

−
+

ϴm

Tm

La T2

Mea

−

+
eb

−

+

�b�

ϴr ϴe ia ωm ω̇0 ϴ0ω̇m ϴm ω0iȧ

θb

θb θa

J2

J1

k
R2 

B2 

R1 
B1 

R1 = R2 

T

Pared

Sujetador

Correas no elásticas

Eje defor-
mable
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4.2 Ra

�a�

KA CARGA
Eje 

flexible

KL

E

ϴr ϴL

ϴL
ϴm

JL
Tm
Jm,Bm 

−

+

e
−

+
Mea

−

+
eb
−

+

ϴr ϴe e ẋ4 ẋ3 ẋ2 ẋ1x4 x3 x2

�b�
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Introducción
Un sistema moderno complejo de muchas entradas y muchas 

salidas que se relacionan entre sí, resulta ser muy complicado 
su estudio, razón por la cual para el análisis de los sistemas de 
este tipo es necesario disminuir la complejidad de las expresio-
nes matemáticas, además se debe recurrir a computadoras que 
realicen los cálculos. El enfoque de variable de estados es más 
conveniente desde este punto de vista.

Mientras la teoría de control convencional se basa en la rela-
ción entrada–salida o función de transferencia, la teoría de con-
trol moderna de control se basa en la descripción de un siste-
ma en términos de n ecuaciones diferenciales de primer orden 
como lo vimos en el capítulo anterior, en el cual cada sistema se 
expresaba en forma de matriz de estado, en este capítulo abor-
daremos los diversos métodos de solución de las matrices de 
estado para obtener la respuesta del sistema en el tiempo y el 
análisis de la controlabilidad y la observabilidad de los siste-
mas de control.

Ahora bien en el capítulo anterior se planteó el primer paso 
para analizar un sistema de control al obtener un modelo ma-
temático del mismo y su representación de estado. Una vez 
obtenido, existen varios métodos para el análisis del compor-
tamiento del sistema, frecuentemente es deseable obtener la 
respuesta en el tiempo de las variables de estado y así exami-
nar el funcionamiento de éste, otro método a considerar en el 

CAPÍTULO 5

ANÁLISIS DE SISTEMAS DE CONTROL EN EL 
DOMINIO DEL TIEMPO

Análisis de variables de estado, respuesta 
transistoria y estacionaria 
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análisis del comportamiento del sistema es el uso de señales de 
prueba, con estas señales de prueba es posible realizar con fa-
cilidad análisis matemático y experimental de sistemas de con-
trol, éstas son funciones muy simples. Para ello analizaremos 
la respuesta en el tiempo de un sistema de control compuesto 
en dos partes, la respuesta transitoria y la respuesta de estado 
estacionario donde veremos un detallado comportamiento de 
los sistemas de control.

Métodos de solución de la ecuación de variables de es-
tado

Como vimos en el Capítulo 3 la forma matricial de la ecua-
ción de estado esta definida por:

x � = Ax + Bu �t�, 	 y = Cx	 x�x0�= D	

Método de solución matriz de transición de estado
La respuesta transitoria puede obtenerse fácilmente calcu-

lando la solución de la ecuación diferencial de variable de esta-
do, tomando la transformada de Laplace a la ecuación de estado 
obtenemos:

sx�s� − x�0� = Ax�s� + Bu�s�			            (69)

Por tanto despejando x�s�:

sx�s� − Ax�s� = x�0� + BU�s� 

�sI − A�x �s� = x�0� + BU�s�

x�s� = �sI − A�−1 *�x�0� + BU�s�� 			           (70)

Calculando la transformada inversa de la Laplace, a la ecua-
ción (70) da como resultado:

x�t� = eAt x�0� + ∫     
t

0  e
A�t−τ� Bu�τ�dτ, 		           (71)

donde la función exponencial se define como:

eAt = I + At + 
A2t2

2!  
+......... +  

Antn

n! 			            
(72)
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La ecuación (71) es la solución de la ecuación de estado, por 
lo tanto si usamos la ecuación (70): 

x�s� = �sI − A�−1 x�0� + �sI − A�−1 Bu�s�		           (62)

si sacamos factor común obtenemos:

ϕ�s� = �sI − A�−1, 					             (74)

es la transformada de Laplace de la función ϕ�t� = eAt esta fun-
ción matricial describe la respuesta forzada del sistema y se co-
noce como matriz de transición de estado, por tanto la ecuación 
puede escribirse:

x�t� = ϕ�t�x �0� + ∫     
t

0  ϕ�t − τ� Bu�τ�dτ, 		           (75)

la solución del sistema no forzado cuando u�t� = 0, sencillamen-
te es x�t� = ϕ�t�x �0� este caso se llama Homogéneo.

Ejemplo 1
Sea la matriz de estado o ecuación de estado:

		           +           μ�t�,  μ�t� = 1, t > 0
x1

x2

0

1
  0        1
−2      −3

las condiciones iniciales son cero.
Primer paso: identificar A,B y determinar �sI − A�−1.

�sI − A� = s   1        0
   0       1  

−
 

  0        1
−2      −3  

=   s        −1
  2    s + 3

,

 donde: 

�sI − A�−1 = 
1

s2 + 3s + 2   

s + 3      1
−2          s

Segundo paso: determinar ϕ�t�.
La matriz de transición de estado puede obtenerse calculan-

do la transformada inversa de Laplace de �sI − A�−1, por lo cual 
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tenemos:

ϕ�t� =    2e−t − e−2t	     e−t − e−2t

−2e−t + 2e−2t        −e−t + 2e−2t

 Tercer paso: determinar x�t� usando la fórmula (75).

x�t� = ∫     
t

0  

0

1
   2e−�t−τ� − e−2�t−τ�	 e−t − e−2�t−τ�

−2e−�t−τ� + 2e−2�t−τ�	 −e−�t−τ� + 2e−2�t−τ�  dτ, 

El primer término se anula porque las condiciones iniciales 
son cero, luego de realizar los productos indicados y calcular la 
integral sencilla obtenemos:

x1�t� = 
0.5 − e−t + 0.5e−2t

e−t − e−2t , t ≥ 0, 

esto implica 

x1�t� = 0.5 − e−t + 0.5e−2t, 	x2�t� = e−t − e−2t 

respectivamente.

Método de solución de matriz A diagonalizada
El caso particular cuando la matriz A solo tiene elementos 

en la diagonal principal, entonces podemos aplicar la ecuación 
(71) de la siguiente manera: 

A = 

a11  0   0........0

0   a21  0........0

0   0   a31......0

0........   .        0

0........   .      ann

 ⇒ x�t� = eat  x�0� + ∫     
t

0
ea�t−τ� Bu�τ�dt,

Esta ecuación se podrá aplicar siempre y cuando la matriz A 
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esté diagonalizada.

Ejemplo 2
Sea la matriz de estado, determine la solución del sistema.

5

1

x�1
x�2

2

3
−1      0
  0    −2

=		      +          μ�t�      x�0� = 
x1

x2

Aplicamos directamente la fórmula para calcular x1�t�, x2�t�.

x1�t� = 5e−t + ∫     
t

0
 2e−2�t−τ� dτ = 5e−t + 2e−τ ∫     

t

0
eτ dτ = 5e−t + 2 

	           − 2e−τ ⇒ x1�t� = 3e−t + 2

x1�t� = e−t + ∫     
t

0
 3e−2�t−τ� dτ = e−2t + 3e−2t ∫     

t

0
e3τ dτ = e−2t + 

3
2

 

              − 
3
2 

e−2t  ⇒ x2�t� = −
e−2t

2
 + 

3
2

Método de solución de la transformada de Laplace
Si tomamos la ecuación (70), podemos establecer que la so-

lución de la ecuación estado estará dada por; x�t� = -1 ��sI − 
A�−1 �x�0� + Bu�s���, donde I es la matriz unidad y ϕ�s� = �sI 
− A�-1 es la matriz de transición de estado.

Ejemplo 3
Sea la matriz de estado:

1

2

x�1
x�2

0

1
  0      6
−1    −5

=		   +         μ�t�    x�0� =        , μ�t�= 1, t ≥ 0
x1

x2

Determine la solución del sistema.

Primer paso: hallar �sI − A�−1.
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�sI − A� = s
 

  1      0
  0      1

  s        −6
  1    s + 5

  0      6
−1    −5

−                   =       

�sI − A�−1 =  
1

s2 + 5s + 6  
 s + 5    6
  −1        s 

Segundo paso: hallar �x�0� + Bu�s��.

�x�0� + Bu�s�� = 
1

2

0

1
1
s

2s +1
s

1
+                =

Tercer paso: hallar x�s�.

x�s� =  
1

s2 + 5s + 6  

 s + 5    6
  −1        s 

 
2s +1

s

1

 
= 

s2 + 17s + 6
s�s + 2��s + 3�

2s
�s + 2��s + 3�

x1�s� = 
s2 + 17s + 6

s�s + 2��s + 3�  
= 

A
s

+ 
B

�s + 2� 
+

 
C

�s + 3�

x2�s� = 
2s

�s + 2��s + 3�  
= 

A

�s + 2� 
+

 
B

�s + 3�

Cuarto paso: hallar x1�t�, x2�t�, aplicando la transformada 
inversa de Laplace a x1�s�, x2�s�.

Luego de aplicar el método de fracciones parciales para de-
terminar las constantes y usar la transformad inversa de Lapla-
ce tenemos:

x1�s� = 1 + 12e−2t − 12e−3t
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x2�s� = −4e−2t + 6e−3t

Método de diagonalización o vectores característicos
El método consiste en la aplicación de una transformación 

lineal, obtener una ecuación de estado con matriz A diagonali-
zada y resolver la nueva ecuación estado por el método de ma-
triz A diagonalizada analizado en este capítulo. Seguidamente, 
realizar la transformación inversa para encontrar la solución de 
la ecuación original, para ello cambiamos el vector de estado x 
por z y la transformación lineal será V.

x = Vz	 y	 x � = Vz �

Sustituyendo en la ecuación: 

x � = Ax + Bu�t�           

obtenemos,

Vz � = AVx + Bu�t�   

Despejando a z�:

z� = V−1 AVz + V−1 Bu�t� = Δz + Eu�t�		           (76)

Se puede apreciar que esta transformación lineal aplicada al 
vector x, cambia el sistema original con variables, x1, x2, x3,....xn a 
un nuevo sistema con variables de estado x1, x2, x3,....xn, la solu-
ción de este nuevo sistema se consigue muy fácilmente usando 
el método descrito en la página 154 y siguientes, luego pode-
mos aplicar la transformación lineal a esas variable x = Vz, para 
encontrar la solución de las variables originales. Para efectos de 
encontrar el vector V, debemos utilizar los procedimientos usa-
dos en ingeniería para determinar el valor de λ de un sistema de 
ecuaciones homogéneo.

�λ − a11� −  a12 U2............a1nUn = 0

 −a12 U1 + �λ − a2� U2........... a2nUn = 0
.
.
.
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−an1U1 − an2U2................... �λ − an�Un

Para una solución no trivial, la forma vectorial se tiene:

�λI −A�V = 0					              (77)

Para V tenga solución no trivial será necesario y suficiente 
que cumpla,

Det�λI −A�V = 0 					              (78)

Se llama polinomio característico de A y λ se le llaman valo-
res característicos que satisface la ecuación:

�λI −A�V = 0 					              (79)

Se le denomina Vector característico.

Ejemplo 4
Sea la matriz de estado:  

     
1

1

x�1
x�2

0

1
  0      1
−2   −3

=		    +           μ�t�,     x�0�= 
x1

x2

Determine la solución del sistema.
Primer paso: determinar los valores característicos.

Det�λI −A�V = Det
 λ     −1
2      λ+3

 = λ2 + 3λ + 2 = �λ + 1� �λ + 2� = 0

De donde se obtiene:
λ1 = −1
λ2 = −2

Segundo paso: hallar el vector característico V. 
Para λ1 = −1, usamos �λI −A�V = 0.

 λ     −1
2      λ+3

=		   = 0,     V11= − V12

V11

V12

V11

V12

 −1   −1
   2      2

para ello tomamos un valor arbitrario, V12  = −1, ⇒ V11  = 1, enton-
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ces, 

el vector V1 = 
1

−1

Análogamente procedemos para λ2 = −2.

 λ     −1
2      λ+3

=		   = 0,   V22 = − 2V21

V21

V22

V21

V22

 −2   −1
   2      1 ,

 
para ello tomamos un valor arbitrario para 

V21 = 1,    ⇒    V22 = −2
Entonces en vector V queda definido:

V = 
  1       1
−1     −2 , 

podemos calcular fácilmente, 

V−1 = 
  2        1
−1     −1

Tercer paso: diagonalizar la matriz de estado.
Usamos la ecuación (65) nos queda:

z�1
z�2  

= 
  2      1
−1   −1  

  0      1
−1   −3  

  1      1
−1   −2  

z1

z2  
+ 

  2      1
−1   −1   

1

1  

μ�t�
 	

z�0� = 
  2      1
−1   −1  

1

1  
Nos queda:
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z�1
z�2  

= 
  −1    0
    0  −2  

z1

z2  
+ 

1

−1  
μ�t�

 	
z�0� = 

3

−2

Cuarto paso: determinar la solución de la matriz diagonali-
zada z1�t�, z2�t�

Aplicamos el método desarrollado el Método de solución 
de la transformada de Laplace (pág. 153 y siguientes).

x1�t� = 3e−t + ∫     
t

0
 e−�t−τ� dτ = 3e−t + 1e−τ = 1 + 2eτ 

x2�t� = −2e−t + ∫     
t

0
 �−e−2�t−τ��dτ 

	        = −2e−2t − 
1
2

 +
e−2t

2
 = − 

1
2

 − 
3

2 
e−2t

Quinto paso: hallar la solución de la matriz original.

 

x1

x2

  1      1
−1   −2

=		                              = 

  1  +  2e−t

− 
1
2  

−
 

3

2  
e−2t

1
2  

+
 
2e−t −

3
2  

e−2t

−2e−t   +   3e−2t

la solución queda definida:

x1�t� = 
1

2 
+ 2e−t

 
− 

3
2 

e−2t

x2�t� = −2e−t

 
+

 
3e−2t

Método de solución interpolación de Sylvester
Para aplicar el método de interpolación de Sylvestre para cal-

cular eAt, es necesario enunciar el teorema de Cayley-Hamilton.
Teorema de Cayley-Hamilton

Sea una matriz nxn y su ecuación característica, λn + a1 λ
n−1 

+..... + an−1 λ + an = 0 la matriz A satisface su propia ecuación ca-
racterística An + a1 An−1 +......... an−1 A + an I = 0.
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Ahora bien utilizando la fórmula de interpolación de Sylves-
ter, se demuestra que eAt se obtiene la ecuación determinante 
siguiente:

1    λ1    λ1
2
  ........λ1

m−1      eλ1t

1    λ2    λ2
2
  ........λ2

m−1      eλ2t

..................................................

..................................................

1    λm    λm
2
  ....................eλmt

I    A      A2............Am−1....eAt

 

= 0		           (80)

Luego al despejar eAt nos queda:

eAt = α0I + α1A + α2A2.........αm−1Am−1			           (81)

Para determinar los valores de αk, k = 1, 2, 3, 4......m−1, se 
debe resolver el sistema de m ecuaciones para αk �t� de la forma

α0 �t� + α1�t�λ1 + α2�t�λ1
2  +.......... αm−1�t� λ1

m−1 = eλ1t        (82)

α0 �t� + α1�t�λ2 + α2�t�λ2
2  +.......... αm−1�t� λ1

m−1 = eλ2t 

α0 �t� + α1�t�λ3 + α2�t�λ3
2  +.......... αm−1�t� λ3

m−1 = eλ3t 

....................………………………………………………………

....................………………………………………………………          

α0 �t� + α1�t�λm + α2�t�λm
2  +.........αm−1�t�λm

m−1 = eλ
m

t 

Ejemplo 5
Sea la matriz de estado. 

x�1
x�2

x1

x2

  0      1
  0   −2

0

0

0

1
=		      +          μ�t�,    x�0�= 

Determine la solución del sistema.
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Primer paso: determinar los valores característicos.

Det�λI − A� = 0,  Det 
 λ     −1
0      λ+2

 = 0 ⇒ la ecuación caracte-

rística nos queda:
λ�λ + 2� = 0 ⇒ λ2 = 0, λ2 = −2

Segundo paso: hallar α0�t�, α1�t� porque el sistema es 2x2.
Usando la ecuación (71):

α0�t� + λ1α1�t�= eλ1t 

α0�t� + λ2α1�t�= eλ2t

Sustituyendo los valores de λ1 = 0,  λ2 = −2 tenemos:

α0�t� = 1

α0�t� + λ2α2�t� = e−2t,       α0�t� − 2α2�t� = e−2t

Resolviendo el sistema obtenemos:

α0�t� = 1, α1�t� = 
1

2
�1 − e−2t�

 
Tercer paso: hallar eAt. 
Usando la ecuación (81), hallamos eAt. 

eAt = α0�t�I + α1�t�A = I + 
1

2
�1 − e−2t�A 

      = 
1 

0  e−2t

�1 − e−2t�
1

2

 
= ϕ�t�

Cuarto paso: luego de hallar ϕ�t�, hallamos la solución del 
sistema x1�t�, x2�t�.

Para hallar la solución del sistema se debe usar la ecuación 
(75).
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 x�t� =  ∫     
t

0  
1 

0  e−2�t−τ�

�1 − e−2�t−τ��
1
2

 

0

1
 

dτ

Nos queda:

 ∫     
t

0   e−2�t−τ�

�1 − e−2�t−τ��
1
2

 
dt

 = 
1 − e−2t

�      t −       +          �
1
2

1
4

e−2t

4

De donde,

x1�t� = −       +       t +   
1
2

1

4
e−2t

4
 

x1�t� = 1 − e−2t

Controlabilidad y observabilidad 
Controlabilidad: se dice que un proceso es completamente 

controlable si cada variable de estado del proceso a ser con-
trolado alcanza un objetivo en un intervalo finito de tiempo 
por una señal de control sin restricciones u�t�. El significado 
de controlabilidad de un sistema establece que si el sistema es 
controlable en un tiempo t0 para un estado inicial x�t0� y si se 
puede transferir este estado a cualquier otro estado x�t1� me-
diante un vector de control sin restricciones para un intervalo 
finito, entonces podemos decir que el sistema es controlable.
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Considérese un sistema lineal invariante en el tiempo des-
crito por las siguientes ecuaciones de estado:

x� = Ax + Bu�t�

y�t� = Cx�t� + Du�x� 				             
(83)

Donde A, B, C y D son matrices de coeficientes con dimensio-
nes apropiadas.

Teorema de controlabilidad
Consideremos la solución de la ecuación de estado:

x�t� = e−At x�0� +  ∫     
t

0
eA�t−τ�Bu�τ�dτ

Si aplicamos la definición de controlabilidad del estado re-
cién establecida, se tiene que:

x�t1� = eAt1 x�0� +  ∫     
t1

0
eA�t1−τ�Bu�τ�dτ = 0

Y despejando x�0�:

x�0� = − ∫     
t

0  e
AtBu�τ�dτ		

Podemos escribir eAt como:

eAt = ∑
n−1

k=0
αk�τ�Ak	

Como se ha visto en las secciones anteriores se obtiene:

x�0� = −∑
n−1

k=0
 AkB  ∫     

t1

0
αk�τ�u�τ�dτ

Y se define, 

 ∫     
t1

0  αk�τ�u�τ�dτ = βk

Entonces,

x�0� = −∑
n−1

k=0
 AkBβk
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Si el sistema es completamente controlable entonces debe 
satisfacer:

x�0� = �B    AB     A2B      A3B........ An−1 B�

 

β0

β1

.

.

.
βn−1

                                                                        		
De este análisis se puede concluir la condición de controlabi-

lidad para el sistema descrito por la ecuación (83) es completa-
mente controlable si y sólo si los vectores B, AB........ An−1 B, sean 
linealmente independientes y la matriz de controlabilidad S es 
de rango es n:

S = �B    AB     A2B      A3B........An−1 B�		           (84)

Finalmente afirmamos que si la matriz S (matriz de contro-
labilidad) no es singular entonces el sistema es controlable.

Ejemplo 6
Sea el sistema descrito:

		
x�1
x�2

x1

x2

  1      1
  2   −1

0

0

0

1
=		      +          μ�t�,    x�0�= 

Para este caso:

S = �B    AB � =
  0      1
  1   −1

 , 

para probar que la matriz S no es singular bastará con que su 
determinante sea diferente de cero, Det�S�≠ 0 entonces si cal-
culamos el determinante del sistema dado:
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 Det 
  0      1
  2   −1

 = 0 − 2 = −2 ⇒ Det�S�≠ 0,

 podemos concluir que el sistema es controlable.

Controlabilidad a la salida de un sistema
Para diseñar un sistema de control se puede necesitar con-

trolar la salida en lugar del estado del sistema, la controlabili-
dad de estado no es condición necesaria ni suficiente para con-
trolar la salida del sistema.

Para sistemas descritos por la ecuación (83), se puede de-
mostrar que la condición de controlabilidad completa a la sa-
lida del sistema es posible sólo si se puede construir el vector 
de control que transfiera la salida inicial y�t0� a cualquier salida 
final y�t� en un intervalo de tiempo finito, el sistema es comple-
tamente controlable a la salida si la matriz �CB   CAB   CA2B.......
CAn−1 B     D� es de rango m, matriz no singular, la demostración 
puede hacerse haciendo las mismas consideraciones para la 
controlabilidad total y se deja al lector como ejercicio.

Observabilidad: se dice que un sistema es completamente 
observable si el estado x�t0� se determina a partir de la obser-
vación de y�t�durante un intervalo finito t0 ≤ t ≤ t1, el sistema es 
completamente observable si todas las transiciones de estado 
afectan eventualmente a todos y cada una de las variables de 
salidas o al vector de salida.

Teorema de observabilidad
Para el sistema descrito por la ecuación (83) cuya solución 

es: 

x�t� = e−At x�0� +  ∫     
t

0
eA�t−τ�Bu�τ�dτ

Y la salida es: 

y�t� = Ce−At x�0� + C ∫     
t

0
eA�t−τ�Bu�τ�dτ + DU�t�

Si consideramos el vector de salida para sistemas homogé-
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neos para hacer el análisis más sencillo cuya salida es:

 y�t� = Ce−At x�0�         

Se tiene que: 

e−At = ∑
n−1

k=0  
αk �τ�Ak

Se obtiene:

y�t� = −∑
n−1

k=0  
αk �τ�CAk x�0�

El sistema es completamente observable si cumple con la 
condición necesaria y suficiente para la matriz de observabili-
dad V, cuyo rango es n, no es singular y tiene la siguiente forma:

	

V = 

C
CA
CA2

CA3

.

.
CAn−1

					              

(85)

    

También puede escribirse la ecuación (74).

V = �C t   C t   At........... C t� At�n−1�

Entonces se dice que el sistema es totalmente observable si 
la matriz V no es singular, implica que el Det�V�≠ 0.

Ejemplo 7
Sea el sistema descrito:

x�1
x�2

x1

x2

 −2      0
   0    −1

0

0

3

1
=		      +         μ�t�,    y = �1   0�      x�0�
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Determine si es observable.
Entonces,  

V = 
C

CA
 =   1     0

−2     0
 ⇒ Det�V� 

    = Det 
  1    0
−2    0

 = 0 −0 = 0, Det�V� = 0

podemos concluir que el sistema no es observable, la matriz V 
es singular.

Análisis de la respuesta transitoria y estacionaria
Una vez conocida la respuesta en el tiempo de un sistema 

(cualquier sistema) por los métodos estudiados anteriormente, 
determinamos que la misma está compuesta por dos partes: la 
respuesta transitoria y la respuesta de estado estacionario, por 
lo tanto, la respuesta se puede escribir como:		

y�t� = ytr�t� + yss�t�				             (86)

La respuesta transitoria ytr�t� se define como la parte de la 
respuesta en el tiempo que va desde el estado inicial hasta un 
estado final en el que tiende a cero cuando ha pasado un tiempo 
muy largo. De manera que ytr�t� tiene la propiedad:

Lím  
t→∞

 ytr�t� = 0					               (87)

La respuesta de estado estacionario es la parte de la respues-
ta total del sistema que permanece o se mantiene en el tiempo, 
luego que la respuesta transitoria ha desaparecido. De manera 
que la respuesta de estado estacionaria puede variar sólo sobre 
un patrón fijo.

El control de la respuesta transitoria es necesariamente im-
portante, porque significa que es la parte del comportamiento 
dinámico del sistema y representa la desviación entre la res-
puesta de salida y la entrada o la respuesta deseada, antes que 
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el estado estable sea alcanzado, ésta debe ser inmediatamente 
controlada porque puede causar problemas o afectar negativa-
mente el comportamiento del sistema.

La respuesta de estado estacionario de un sistema de con-
trol es también muy importante, ésta indica el estado de equi-
librio del sistema cuando el tiempo se hace muy largo. Cuando 
un sistema de control opera, la respuesta estacionaria es com-
parada con una señal de referencia o señal deseada. En general, 
si la respuesta de estado estacionaria de la salida del sistema no 
concuerda con la señal de referencia o con la señal deseada, el 
sistema expresa que tiene un error de estado estacionario.

Error de estado estacionario
Como mencionamos en la explicación de la respuesta de es-

tado estacionario, la diferencia que existe entre la señal de sali-
da y la señal de referencia lo definimos como el error de estado 
estacionario, por esta razón la respuesta de estado estacionario 
rara vez concuerda con la señal de referencia o deseada. Por 
lo tanto, los errores de estado estacionario en los sistemas de 
control son casi inevitables, éste es problema a considerar en 
el diseño de los sistemas de control, uno de los objetivos es re-
ducir el error de estado estacionario al mínimo o mantenerlo 
en un valor tolerable, al mismo tiempo la respuesta transitoria 
debe satisfacer el conjunto de especificaciones.

Los requerimientos de precisión en los sistemas de control 
dependen en gran extensión de los objetivos del sistema de 
control.

El análisis de errores de estado estacionario es ilustrado en 
Figura n° 56 donde se muestra el diagrama de bloque de un sis-
tema de control realimentado (Lazo cerrado) donde r�t� es la 
entrada del sistema y y�t� es la salida del sistema. El error del 
sistema queda definido como:

e�t� = r�t� − y�t� 				             (88)
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El error de estado estacionario es definido como:

ess =Lím  
t→∞

 e�t�					              (89)

Usando el teorema de valor final de transformada de la La-
place, la ecuación (89) puede ser escrita como:

ess =Lím  
t→∞

 e�t� = Lím  
s→0

 sE�s�			            (90)

Ahora analizaremos la Figura n° 56 para determinar la fun-
ción error E�s�, con la cual podemos determinar el error en 
función de los elementos del modelo de sistema de control re-
alimentado en el dominio de s, seguidamente aplicamos la pro-
piedad de la transformada de Laplace usando la ecuación (90) 
la cual detallamos.

Por definición Y�s� = G�s�E�s� y E�s� = R�s� − H�s�Y�s�, si 
combinamos las ecuaciones, obtenemos:

Y�s� = 
R�s� − E�s�

H�s�
, 

además R�s� − E�s� = G�s�E�s�H�s�, despejando E�s�, nos que-
da:

 E�s� = 
R�s�

1 + G�s�H�s�
 				             (91)

Fig. 56. Modelo de sistema de control realimentado.

Y�s�E�s�
G�s�

H�s�

R�s�

−+
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ecuación general de error,
Entonces el error de estado estacionario queda definido:

ess = Lím  
t→∞

e�t� = Lím  
s→0

sE�s� = Lím  
s→0

S.R�s�
1 + G�s�H�s�	          

(92)

Queda muy claro que ess depende de G�s�, más específica-
mente, podemos mostrar que ess  depende del número de polos 
de G�s�, para s = 0, este número se conoce como el tipo de siste-
ma de control o sencillamente el tipo.

Cálculo del error de estado estacionario para tipos de 
sistemas de control

Para realizar el análisis matemático del error de estado es-
tacionario es necesario utilizar señales de entrada de prueba 
para la respuesta en el tiempo de los sistemas de control, estas 
señales son pulso unitario μ�t�, rampa tμ�t� y parabólica: 

t2

2
 μ�t�

Caso n° 1 
Cálculo de error de estado estacionario cuando la entrada es 

un pulso unitario r�t� = μ�t� definida como:

μ�t� = �
1   t ≥ 0
0   t < 0

	

Sabemos que la transformada de la Laplace de la entrada 
r�t� = μ�t�  es:

R�s� = 
1
s

, entonces usando la ecuación (92) tenemos:

ess = 
Lím  
s→0 	

R�s�
1 + G�s�H�s�

 = Lím  
s→0

 
1 + G�s�H�s�

1
s

s
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      = Lím  
s→0

1
1 + G�s�H�s�

 = 
1

1 + Lím  
s→0

G�s�H�s�

Si llamamos kp = Lím  
s→0

G�s�H�s�, entonces el error de estado 
estacionario es:

ess = 
1

1 + kp

La representación típica cuando la entrada es un pulso uni-
tario μ�t�cuando kp es finita y diferente de cero se muestra en 
la Figura n° 57.

Cuando en un sistema tiene una señal de entrada pulso uni-
tario, si se puede determinar el valor de la constante kp y ésta es 
diferente de cero, entonces para las entradas de prueba rampa  
r�t� = tμ�t� y parabólica: 

r�t� = 
t2

2
 μ�t�,

el error de estado estacionario ess = 0, por lo tanto podemos 
resumir que el error de estado estacionario para una entrada 
pulso unitario tiene la siguiente característica:

 

p
ss k

e
+

=
1

1

 )()( ttr µ=

 )(ty

ess = 
1

1 + kp

Fig. 57. Error típico de estado estacionario para  r�t� = μ�t�.

r�t�= μ�t�

y�t�
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	 Sistema TIPO 0      ess = 

1
1 + kp

       

	 Sistema TIPO 1 o Mayores    ess = 0 
Caso n° 2 

Cálculo de error de estado estacionario cuando la entrada es 
una rampa r�t� = tμ�t�.

Análogamente al caso anterior, la transformada de Laplace 
de la entrada es: 

R�s� = 
1
s2

, entonces usando la ecuación (81) tenemos:

ess = 
Lím  
s→0

 
1 + G�s�H�s�

1
s2

s
 = 

1 + G�s�H�s�

1
s

 

     = Lím  
s→0

1
s + G�s�H�s�

 = 
1

 Lím  
s→0

G�s�H�s�
, 

si hacemos 

kv = Lím  
s→0  

G�s�H�s�

Y el error de estado estacionario es:

	 ess = 

1
kv

La representación típica cuando la entrada es una rampa 
tμ�t�cuando kv  es finita y diferente de cero se muestra en la 
Figura n° 58.

Análogamente al primer caso, concluimos que si en un sis-
tema donde la señal de entrada es una rampa, podemos calcu-
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lar kv y ésta es diferente de cero, entonces para las entradas de 
prueba rampa r�t� = μ�t� y parabólica: 

r�t� = 
t2

2
 μ�t�, 

el error de estado estacionario ess = ∞ y ess = 0 respectivamente, 
entonces el error de estado estacionario tiene la siguiente ca-
racterística:

	 Sistema TIPO 0		 ess = ∞ 

	 Sistema TIPO 1           	 ess = 

1
kv

	 Sistema TIPO 2		 ess = 0   

Caso n° 3 
Cálculo de error de estado estacionario cuando la entrada es 

una parábola:

)()( tttr µ=

 )(ty

v
ss k

e 1
=

Fig. 58. Error típico de estado estacionario para r�t� = μ�t�.

y�t�
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r�t� = 
t2

2
 μ�t�.

Siguiendo el procedimiento, la transformada de Laplace:

r�t� = 
t2

2
 μ�t�, 

entonces usando la ecuación (92) tenemos:

ess = 
Lím  
s→0

 
1 + G�s�H�s�

1
s3

s
 = Lím  

s→0 1 + G�s�H�s�

1
s2

 

     = Lím  
s→0

1
s2 + s2 G�s�H�s�

 = 
1

 Lím  
s→0  

s2 G�s�H�s�
, 

Si hacemos ka = Lím  
s→0  

s2 G�s�H�s� y el error de estado estacio-
nario es:

ess = 

1
kv

La representación típica cuando la entrada es una parábola:

r�t� = 
t2

2
 μ�t�.

cuando ka es finita y diferente de cero se muestra en la Figura 
n° 59.

r�t� = 
t2

2
 μ�t� 

Luego de analizar este caso, concluimos que si en un sistema 
donde la señal de entrada es una parábola, podemos calcular ka 
y ésta es diferente de cero, entonces para las entradas de prue-
ba rampa r�t� = μ�t� y parabólica r�t� = μ�t� el error de estado 
estacionario es para ambos casos ess = ∞ entonces el error de 
estado estacionario tiene la siguiente característica:

	 Sistema TIPO 0		 ess = ∞
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	 Sistema TIPO 1		 ess = ∞

	 Sistema TIPO 2		 ess = 

1
ka

  

La siguiente Tabla n° 2 resume los errores de estado estacio-
nario para señales de entradas pulso, rampa y parábola.

Tabla 2

Tipo de 
sistema Constantes de error

ess
Entrada 
de señal 

pulso

ess
Entrada 
de señal 
rampa

ess
 Entrada 

señal 
parabólica

0 kp 0 0
1

1 + ka

∞ ∞

1 ∞ kv 0 0
1
kv

∞

 Fig. 59. Error típico de estado estacionario para r�t� = 
t2

2
 μ�t�.

a
ss k

e 1
=

 )(ty

 
)(

2
)(

2

tttr µ=

y�t�

r�t�= 
t2

2
 μ�t�
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Tipo de 
sistema Constantes de error

ess
Entrada 
de señal 

pulso

ess
Entrada 
de señal 
rampa

ess
 Entrada 

señal 
parabólica

2 ∞ ∞ ka 0 0
1
ka

3 ∞ ∞ ∞ 0 0 0

                        

Ejemplo 8

Determine las constantes de error estado estacionario para 
las señales de prueba, pulso, rampa y parábola: 

t2

2  
μ�t�  

para sistema de control realimentado cuyas funciones de trans-
ferencias de lazo abierto son dadas a continuación: 

G�s� = 
1

�s2  + s  + 2�
,	 H�s� = 

1
�s  + 1�

 

Primer paso: hallar las constantes kp, kv, y ka.

kp = Lím  
s→0

G�s�H�s� = Lím  
s→0

1
�s2  + s  + 2� �s  + 1�

 = 
1
2

kv = Lím  
s→0

sG�s�H�s� ⇒ kv = 0

ka = Lím  
s→0

s2 G�s�H�s� ⇒ ka = 0

Tabla 2. (continuación)
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Segundo paso: calcular los errores de estado estacionario.

Sistema Tipo 0 ess =

                                                    

1
2

1 +

1
2
3

=

Sistema Tipo 1	 ess = 
1
0  

 = ∞

Sistema Tipo 2              ess = 
1
0  

 = ∞ 

Ahora que sabemos calcular los errores sobre las respuestas 
de salida de un sistema, nos abocaremos a analizar la respuesta 
en el tiempo de sistemas de primer y segundo orden observan-
do su desempeño y características de comportamiento.

Respuesta en el tiempo de sistemas de primer orden
Un sistema de primer orden tiene una relación de entrada-

salida (ganancia) siguiente:

Y�s�
R�s� 

 = 
1

Ts + 1
, 					              (93)

esto implica que el modelo estándar para este tipo de sistema 
tiene la forma mostrada en el diagrama de bloque con reali-
mentación unitaria en la Figura n° 60.

Fig. 60. Diagrama de bloque de un sistema de primer orden.

Y�s�R�s�

−+
1
Ts 
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Si despejamos la salida de la ecuación (93) obtenemos:

Y�s� = 
1

Ts + 1
, 

suponemos las condiciones iniciales cero, conociendo la señal 
de entrada r�t� podemos determinar el comportamiento y res-
puesta en el tiempo del sistema, para explicar este proceso to-
maremos una señal de prueba conocida, la función pulso, aun-
que pudiéramos tomar cualquiera, por simplicidad hacemos 
esta elección, sea r�t� = μ�t�, sabemos que: 

R�s� = 
1
s

, 

entonces,

Y�s� = 
1

s�Ts + 1�
, 

si buscamos la transformada inversa de Laplace de Y�s�, tene-
mos:

y�t� = 1 − e− 
t
T , para t ≥ 0

Si aplicamos la definición de error y usamos la ecuación (88) 
tenemos:

e�t� = r�t� − y�t� = 1 − �1 − e− 
t
T � = e�t� = e− 

t
T   ⇒  ess = Lím  

t→∞

e�t� = Lím  
t→∞

e− 
t
T  = 0

Ahora vamos a demostrar que usando la ecuación (90) nos 
da el mismo resultado, aplicamos el teorema de valor final para 
determinar el error de estado estacionario: 
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ess = Lím  
s→0

s�
1
Ts

1 +

1
s

 � = Lím  
s→0

Ts
Ts + 1

 = 
0
1

  = 0

Observamos que la respuesta en ambos casos es la misma, la 
gráfica del comportamiento del sistema en la Figura n° 61.

En conclusión observamos que la respuesta del sistema de-
pende de las características de la señal de entrada.

Respuesta en el tiempo de sistemas de segundo orden
Un sistema de segundo orden tiene una función de transfe-

rencia de la forma:

Y�s�
R�s� 

 = 
ωn

2

s2 + 2Ϛωns + ωn
2 

, 				             (94)

Esta ecuación es llamada la forma estándar de la función 
de transferencia de un sistema de segundo orden, donde Ϛ es 
definido como la razón de amortiguación y es adimensional y 
ωn representa la frecuencia natural del sistema, la Figura n° 62 

 )()( ttr µ=

 
T
t

ety
−

−= 1)(

r�t� = μ�t�

y�t� = 1 − e− 
t
T

Fig. 61. Gráfica de la respuesta en el tiempo.
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muestra el modelo en diagrama de bloques de un sistema de 
control en de segundo orden.

La ecuación característica del modelo de segundo orden la 
representa el denominador de la ecuación (83) igualada a cero:

Δ�s� = s2 + 2Ϛωn + ωn
2  = 0  			            (95)

Para una entrada pulso unitario, donde: 

R�s� = 
1
s

, 

la respuesta de salida se obtiene de buscar la transformada in-
versa de Laplace a la salida:

 Y�s� =  
ωn

2

s�s2 + 2Ϛωns + ωn
2 �

, 

el resultado que obtenemos es:

y�t� = 1 − 
1 − Ϛ 2

e−Ϛωnt

  sen�ωn 1 − Ϛ 2  t + Cos−1 �Ϛ��   t ≥ 0

							                
(96)

Los efectos de los parámetros Ϛ y ωn en la respuesta del mo-
delo de segundo orden y�t�, la estudiaremos referidas a las raí-
ces de la ecuación característica, donde:

s1, s2 = −Ϛωn ± jωn � 1 − Ϛ 2 � 			            (97)

Los efectos de la ecuación característica en la amortiguación 
de un sistema de segundo orden, mientras la razón de amorti-

Fig. 62. Modelo de sistema de segundo orden.

Y�s�R�s� ωn
2 

s �s + 2Ϛωn�−+
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guación varía desde −∞ a ∞ la frecuencia natural permanece 
constante, la siguiente clasificación de los sistemas dinámicos 
con respecto a los valores de Ϛ queda expresado.

Sub-amortiguado:

0 < Ϛ < 1:		 s1, s2 = −Ϛωn ± jωn � 1 − Ϛ 2 �  −Ϛωn < 0

Críticamente amortiguado:

Ϛ  = 1	 s1, s2 = −ωn 

Sobre amortiguado:

Ϛ  = 1	 s1, s2 = −Ϛωn ± ωn � 1 − Ϛ 2 �           

Sin amortiguamiento:

Ϛ  = 0:	  s1, s2 = ± jωn 

Negativamente amortiguado:

Ϛ < 0:	 s1, s2 = −Ϛωn ± jωn � 1 − Ϛ 2 �  −Ϛωn < 0

En aplicaciones prácticas, sólo los sistemas estables son los 
que corresponden a Ϛ > 0 y éstos son los de interés, tomando 
como entrada una señal pulso unitario mostramos a continua-
ción en la Figura n° 63 la respuesta del sistema en función del 
tiempo normalizado ωnt para varios valores de la razón amor-
tiguamiento. Como vemos, la respuesta se hace más oscilatoria 
a medida que decrece Ϛ. Cuando Ϛ ≥ 1 la respuesta no presenta 
sobrepaso, esto quiere decir que y�t� nunca excede al valor de 
referencia durante la respuesta transitoria.

En muchos casos prácticos las características de desempeño 
deseadas en los sistemas de control se expresan en funciones 
en el dominio del tiempo. Por ejemplo, los sistemas que alma-
cenan energía no responden instantáneamente y presentan 
respuestas transitorias cada vez más sujetas a entradas inde-
seadas o perturbaciones.

Con frecuencia, las características de desempeño de un sis-
tema de control se especifican en términos de la respuesta tran-
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Fig. 52. Comparación de las respuestas en el tiempo 
para valores diferentes de Ϛ.
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Fig. 64. Respuesta de un sistema de control segundo orden con entrada 
escalón unitario.

sitoria para una entrada de escalón unitario, puesto que ésta es 
muy fácil de generar y es suficientemente drástica.

La respuesta transitoria de un sistema para una entrada es-
calón unitario depende de las condiciones iniciales, por conve-
niencia al comparar las respuestas transitorias de varios siste-
mas, es muy práctico usar la condición inicial cero (sistemas en 
reposo), por lo cual todas las salidas y todas las derivadas con 
respecto al tiempo son cero. De este modo las características de 
respuesta se comparan con facilidad.

En la práctica la respuesta transitoria de un sistema de con-
trol muestra con frecuencia oscilaciones amortiguadas antes de 
alcanzar el estado estacionario. Al especificar esta característi-
ca para una entrada escalón unitario, es común definir los pará-
metros mostrados en la Figura n° 53 para su estudio.

td: tiempo de retardo. 

tr: tiempo de levantamiento o subida.

tmax: tiempo máximo.

ts: tiempo de establecimiento o asentamiento.

 

  

) ( t y 

Sobrepaso máximo o  
máxima  elongación 

0.5 
  

d t 

0.9 

0.1 
  

r t 

  

max t 

  

s t 

) ( ) ( t t r µ =   

p S 

tmax

y�t�

r�t� = μ�t�

td

tr
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Sp: sobrepaso máximo.

Ahora estableceremos las ecuaciones que relacionan estos 
parámetros en la respuesta transitoria:

Sobrepaso máximo 
Se maximiza la ecuación (96). 

y�t� = 1 − 
1 − Ϛ 2

e−Ϛωnt

  sen �ωn 1 − Ϛ 2  t + cos−1 �Ϛ�� t ≥ 0

Utilizando la derivación, allí encontramos tmax y luego la sus-
tituimos encontramos:

Sp = e 1 − Ϛ 2

πϚ

					              (98)

Tiempo máximo
Se encuentra al maximizar la función y�t� y obtenemos:

tmax = ωn 
1 − Ϛ 2

π

				                   
(99)

Tiempo de retardo
Se hace un estudio aproximado de la curva de la ecuación 

y�t� en un intervalo 0 < Ϛ < 1, donde determinamos que el tiem-
po de retardo es aproximadamente:

td =  
1 + 0.7Ϛ

ωn

,					              (100)

más aproximadamente: 

td =  
1.1 + 0.125Ϛ + 0.469Ϛ2 

ωn

Tiempo de levantamiento
Análogamente al tiempo de retardo se hace una aproxima-

ción en un rango 0 < Ϛ < 1, donde encontramos:

tr  = 
0.8 + 2.5Ϛ

ωn

,					              (101)
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más aproximadamente:

tr  = 
1 − 0.4167Ϛ + 2.917Ϛ2

ωn

Tiempo de establecimiento
La aproximación que se hace para valores  Ϛ < 0.69. 

ts  = 
3.2
Ϛωn 	 					               

(102)

Ejemplo 8
El diagrama de bloque mostrado en la Figura n° 65, determi-

ne las constantes de error para entradas pulso, rampa y para-
bólica, la señal de error es definida e�t�, además determine el 
error de estado estacionario en términos de k y kt, luego deter-
mine los valores de k y kt si el sobrepaso máximo es 4.3% y el 
tiempo de levantamiento es 0.2 seg; use las ecuaciones de (98) 
hasta (91) para realizar los cálculos.

Primer paso: simplificar el diagrama de bloque a la forma 
del modelo de realimentación clásico.

Fig. 65. Diagrama de bloque del Ejemplo 8.

R�s� C�s�E�s�
K

Kt

1

20s

100
1 + 0.2s−+ −+

R�s� C�s�E�s�
K

1

20s

100

1 + 0.2s + 100kt−+
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Luego,

Ahora sí podemos aplicar las fórmulas de las constantes de 
error, para: 

G�s� = 
25K

s2 + �5 + 500kt�s
  y  H�s� = 1

Segundo paso: aplicar las fórmulas de las constantes kp, kv, 
ka, para las entradas pulso, rampa y parábola.

Sistema Tipo 0

kp = Lím  
s→0

 G�s�H�s� = Lím  
s→0

25K

s2 + �5 + 500kt�s
 = ∞ 	 ess = 0

 	
Sistema Tipo 1 

kv = Lím  
s→0

 sG�s�H�s� = Lím  
s→0

s �
25K

s�s + 5 + 500kt�
� 

= 
25K

s + 5 + 500kt

, ess = 
1

kv 
 = 

s + 5 + 500kt

25K

Sistema Tipo 2  
ka = 0, ess = ∞	   

Tercer paso: determinar los valores de Ϛ y ωn.
Los datos que tenemos son Sp = 0.043 y tr = 0.2seg, usando las 

ecuaciones (98) y (101) tenemos:

C�s�R�s� E�s� 25K

s2 + �5 + 500kt�s−+
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0.043 = e 1 − Ϛ 2

πϚ

 ⇒ ln�0.043� = − 
1 − Ϛ 2

πϚ
;

−3.1465 = − 
1 − Ϛ 2

πϚ
 ⇒ �3.1465�2 = 

1 − Ϛ 2

�πϚ�2

;

9.9 = 
1 − Ϛ 2

9.869604 Ϛ 2

  

⇒ 9.9 − 9.9Ϛ 2 = 9.869604Ϛ 2.

de donde 9.9 = 19.769604Ϛ 2.

Ϛ 2 = 
19.769604

9.9
 = 0.49923 ⇒ Ϛ  = 0.706.

Ahora con ese valor buscamos ωn:
	

tr = 
ωn

0.8 + 2.5Ϛ
	 ⇒  0.2 =  

ωn

0.8 + 2.5�0.706�
 de donde: 

ωn = 
0.2

0.8 + 1.76
 = 12.825

Cuarto paso: construir el modelo de respuesta en el tiempo 
de segundo orden.

GT�s� = 
ωn

2

s2 + 2Ϛωn + ωn
2 
, = 

C�s�
R�s�

         = 
�12.825�2

s2 + 2�0.706�+ �12.825�s + �12.825�2
 

         = 
164.4806

s2 + 18.10s + 164.4806
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Comparamos este modelo con el modelo obtenido en el pri-
mer paso.

C�s�
R�s� 

 =
 

25K

s2 + �5 + 500kt�s + 25K
, 

comparando término a término y despejamos:

25K = 164.4806 ⇒ k = 
164.4806

25  

 = 6.57

k = 6.57

5 + 500kt = 18.10  ⇒   kt = 
18.10 − 5

500
 = 0.0162

kt = 0.0162

Controladores automáticos industriales
La función del controlador automático es comparar el valor 

real de la salida de la planta con el valor deseado, con el objeto 
de minimizar los errores en los sistemas de control, como vi-
mos en los sistemas estudiados en el Capítulo 1, el controlador 
determina la desviación y produce una señal de control que re-
duce la desviación a cero o a un valor pequeño, la forma en que 
el controlador produce la señal se llama acción de control.

A continuación describiremos las acciones de control fun-
damentales usadas comúnmente en controladores automáticos 
industriales.

Las acciones de control que desempeñan los controladores 
automáticos industriales consisten en minimizar los errores de 
desempeño y mantener el sistema dentro de los parámetros de-
seados de operación, los más comunes son: El de dos posiciones 
encendido y apagado, proporcional, integral y derivativo. Es im-
portante comprender las propiedades básicas de las acciones 
de control, con el objeto que se pueda seleccionar el controla-
dor más adecuado, cuando se haga un análisis de un sistema en 
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particular.
Veamos la Figura n° 66 donde se muestra un diagrama de 

bloques de un sistema de control industrial, el cual consta de un 
controlador automático, un actuador, una planta y un elemento 
de medición.

El controlador detecta la señal de error actuante, la cual 
usualmente está en el nivel más bajo de potencia y la amplifica 
la un nivel suficientemente alto.

El actuador es un elemento que produce una señal a la entra-
da de la planta de acuerdo con la señal de control, de modo que 
la señal de realimentación corresponda a la señal de entrada.

El elemento de medición es un dispositivo que convierte la 
variable de salida en otra variable, tal como desplazamiento, 
presión o voltaje, la cual puede usarse para comparar la salida 
con la señal de entrada.

Controlador de dos posiciones o de encendido-apagado
El control de dos posiciones o de encendido-apagado es muy 

barato y sencillo por lo cual es muy usado en la industria; su-
pongamos que la salida del controlador es b�t� y la señal de 
error e�t�, la señal del controlador b�t� permanece en un valor 
máximo o mínimo, dependiendo de que la señal de error del 
actuador sea positiva o negativa, de modo que si e�t� es menor 
que cero, entonces pasa a un estado y si es positiva pasa a otro 
estado, generalmente el estado que pasa el controlador cuando 
la señal es negativa es cero, veamos el diagrama de bloque en 
la Figura n° 67.

 

+ - Amplificador Actuador Planta 

Elemento de 
medicion 

Entrada de 
Referencia  

Detector de Error 

Detector de error del 
actuador 

Fig. 66. Diagrama de bloques de un sistema de control industrial.

Controlador automático
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 Controlador proporcional 
El controlador mostrado en la Figura n° 68 su acción de con-

trol definida en la relación ecuación (92).

Gc =  
b�s�
E�s�

 = kp , 					              (103)

se llama ganancia proporcional, para el caso de sistemas de se-
gundo orden, el controlador responde de manera proporcional 
a la señal de error, el error de estado estacionario se reduce si 
se incrementa el valor de la ganancia; sin embargo, esto haría 
que la respuesta fuera más oscilatoria.

Controlador derivativo
El controlador mostrado en la Figura n° 69 análogamente al 

anterior tiene una relación en la ecuación (104), éste responde 
muy bien a la razón de cambio de velocidad del error y produce 
una corrección de error antes que la magnitud de error sea de-
masiado grande.

Gc =  
b�s�
E�s�

 = skp  					              (104)
 

Fig. 67. Controlador de dos posiciones.

b�t�e�t�
−+

Fig. 68. Controlador proporcional.

b�t�e�t�
Gc = kp−+
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Controlador integral 
El controlador mostrado en la Figura n° 70 análogamente al 

anterior tiene una relación mostrada en la ecuación (105), éste 
controlador elimina el error en estado estacionario en respues-
ta al escalón unitario. Ésta es una mejora importante al con-
trolador proporcional que produce un offset (error de estado 
estacionario en presencia del controlador proporcional) esto se 
observa colocándolo en un sistema de primer orden.

Gc =  
b�s�
E�s�

 = 
kp

s 				    	          
(105)

Controladores combinados
Con el objeto de mejorar su desempeño se usan también 

controladores combinando los anteriormente, ellos se llaman:

Controladores proporcionales integrales
Cuya relación de ganancia dada por:

Gc =  
b�s�
E�s�

 = kp�
1
sT 

+1�; como vemos en la Figura n° 60.

Fig. 69. Controlador derivativo.

b�t�e�t�
Gc = skp−+

Fig. 70. Controlador integral.

b�t�e�t�
Gc = kp/s−+



191Alí José Carrillo Paz

Controladores proporcionales integrales derivativos 
(PID)

Cuya relación de ganancia esta dada por:

Gc =  
b�s�
E�s�

 = kp�
1
sT 

+ s + 1�; como vemos en la Figura n° 72.

Para el análisis de estos controladores sólo se debe aplicar el 
mismo procedimiento desarrollado en el ejemplo n° 8, donde se 
resolvió el caso cuando el controlador es proporcional colocan-
do en el bloque Gc una constante llamada K y donde determina-
mos su valor de 6.57.

Ejemplo 9
Sea el sistema de primer orden mostrado en la Figura n° 

73.a. Determinar el error de estado estacionario si la entrada 
es un pulso unitario para un controlador proporcional y luego 

Fig. 71. Controlador proporcional integral.

b�t�e�t�
Gc = kp(1+1/s)−+

Fig. 72. Controlador proporcional Integral derivativo.

b�t�e�t�
Gc = kp(1+s+1/s)−+
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usando un controlador integral y comparar los resultados.

Primer paso: calcular el error de estado estacionario.
Usando el procedimiento del Ejemplo 8, si Gc  = K y tenemos 

que r�t� = μ�t� tenemos:

R�s� =  
1
s

 =  y 

E�s� =  
R�s�
C�s�

 = 
K

Ts + 1
1 +

R�s�
 = 

sT + 1
s�sT + K + 1�  

, 

usando el teorema de valor final y la ecuación n° 92.

ess = Lím  
t→∞

e�t� = Lím  
s→0

sE�s� = Lím  
s→0

s�
sT + 1

s�sT + K + 1�
� = 

1
K + 1

La respuesta en el tiempo se dibuja en la Figura n° 73.b.
Segundo paso: resolver el mismo problema pero ahora con 

Gc = 
K
s  

y r�t� = μ�t�; tenemos R�s� = 
1
s  

 y 

E�s� =  
R�s�
C�s�

 = 
K

s�Ts + 1�
1 +

R�s�
 = 

s�sT + 1�
s�s2T + s + K�

, 

Fig. 73.a. Modelo de sistema de control.

R�s� C�s�
Gc

1
sT + 1−+
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usando el teorema de valor final y la ecuación (92).

ess = Lím  
t→∞

e�t� = Lím  
s→0

sE�s� = Lím  
s→0

s�
s�sT + 1�

s�s2T + K + s�
� = 0

Este controlador elimina el error que había con el contro-
lador proporcional, lo que representa una mejora importante 
respecto al controlador anterior.

Sensibilidad en los sistemas de control realimentados
El concepto de sensibilidad es de primordial importancia 

en los sistemas de control, un sistema realimentado percibe el 
cambio en la salida debido a los cambios del proceso e intenta 
corregir la salida.

La sensibilidad del sistema se define como la relación del 
cambio porcentual en la función de transferencia del sistema 
respeto al cambio porcentual en la función de transferencia del 
proceso (parámetro del sistema). La función de transferencia 
del proceso para un cambio incremental pequeño la definire-
mos para este caso como:

1

t

Figura 73.b. Respuesta a un pulso unitario y el error offset.

r�t�

c�t�
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Gt�s� = 
Y�s�
R�s�

, 					              (106)

por tanto la sensibilidad se define

S = 
ΔGt /Gt�s�
ΔG /G�s�

, 					              (107)

si tomamos el límite para cambios pequeños la ecuación queda:

S   =
Gt

G

ӘGt�s�
Gt�s�

ӘG�s�
G�s� 					             

(108)

Ejemplo 10
Sea el sistema mostrado en la Figura n° 74, determine la sen-

sibilidad respecto a K, si se tiene un controlador proporcional Gc 
= kp y la función de transferencia de la planta.

G = 
K

s + 0.1
 = G�s�

La función de transferencia del sistema es:

Gt�s� = 
Gp Gc

1 + Gp Gc

 = 

Kkp

s + 0.1

1 +
Kkp

s + 0.1

 = 
Kkp

s + 0.1 + Kkp

, 

Fig. 74. Sistema de realimentación unitaria del ejemplo n° 10.

R�s� Y�s�

−+ K
s + 0.1Gc
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entonces la sensibilidad respecto a K:

S   =
Gt

K  
ӘGt

ӘK  
K
Gt

 = 
K
Gt

  
kp �s + 0.1 + kp K�−kp

2 K
�s + 0.1 + Kkp�2

 

      = 
K� kp s + 0.1 + kp�
�s + 0.1 + Kkp�2

 = 
�s + 0.1 + Kkp �

Kkp

S   =
Gt

K  
�s + 0.1�

�s + 0.1 + Kkp �

A medida que K se hace grande, la sensibilidad tiende a cero 
y a medida que K se hace pequeña la sensibilidad tiende a la 
unidad y los cambios de K afectan directamente a la respuesta 
de salida. Por lo tanto, se deben usar componentes en la plan-
ta que no varíen con los cambios de ambiente u otros factores, 
para que puedan mantenerse constantes.

Respuesta transitoria y estacionaria usando Matlab
Respuesta del sistema para una entrada pulso unitario.
Veamos el ejemplo:

C�s�
R�s�  = G�s� = 

1
�s2 + 0.2 + 1�

> num=� 0   1   0�;
> den=�1   0.2   1�;
>step(nun,den)
(Ver Figura n° 75)
Para una entrada rampa unitaria, sólo se cambia:
>> r=t;
>> y=lsim(nun,den,r,t);
>> plot(t,y)
(Ver Figura n° 76)
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Fig. 76. Respuesta del sistema a una rampa unitaria.
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Fig. 75. Respuesta del sistema usando Matlab.
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PROBLEMAS

1.	 Determine las soluciones de las siguientes ecuaciones 
de estado, usando el métodos desarrollados en Métodos de 
solución de la ecuación de variables de estado.

1.1   

1.3  

1.2  

x'1
x'2

x1

x2

  2    −3
  1    −2

  1      0
  0      1

e2t

μ�t�

1

0
=		      +                                    x�0�= 

x'1
x'2

x1

x2

    2     1
  −4    2

te2t

e2t

2

2
=                              +                    x�0� = 

x'1
x'2

x1

x2

  −4     2
    2   −1

−1

 2

1

2
=                               +           μ�t�    x�0� = 

x'1
x'2

x1

x2

    0   −2
    1   −2

−3

 1

0

2
=                               +           μ�t�    x�0� = 

x'1
x'2

x1

x2

    0     1
 −2   −3

 0

 1

3

−1
=                               +           μ�t�    x�0� = 

1.4

2.	 Determine las soluciones de las siguientes ecuaciones de es-
tado (espacios de estado), usando el método de diagonalización 
o de vectores característicos. 

2.1
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3.	 Para las siguientes matrices de los coefientes determine la 
controlabilidad y la observabilidad.

3.1 

=		                     +          μ�t�    x�0� = 

x'1

x'2

x'3

x1

x2

x3

−1

0

1

−1

0

1

−2     −2      0                

  0      0      1                

  0      3    −4                

=		                   +            μ�t�    x�0� = 

x'1

x'2

x'3

x1

x2

x3

0

1

2

2

1

0

   0      1      0                

  0      0      1                

 −6  −1    −6                

A=                                  B=           C= �0    −1       6� 

0

1

3

−2      1      0                

  0   −2      0                

−1  −2    −3                

3.2 

3.3 

 −2      0
   0    −1

 0

 1
A=                    B=           C = �−1   3� 

   1      2
   1      1

 2

 1
A=                    B=           C= �0    4� 

2.2  

2.3 



199Alí José Carrillo Paz

4.	 Determine el tipo de sistema, para los sistemas de realimen-
tación unitaria cuyas funciones de transferencias son dadas a 
continuación.

4.1	  G�s� = 
k

�s + 1��1 + 10s�+ �1 + 20s�

4.2	  G�s� = 
10�s + 1�

s�s + 5�+ �s + 6�

4.3	  G�s� = 
10�s + 1�

s�s2 + 5s + 5�

4.4	  G�s� = 
10e−0.2s

�s + 1��1 + 10s�+ �1 + 20s�

4.5	  G�s� = 
10�s − 1�

s2�s + 5�+ �s + 6�2

A=                                  B=           C= �1    0     3� 

0

1

1

−1      1      0                

  0   −1      0                

  0     0    −1

   1      1
−1    −3

 0

 1
A=                    B=           C= �1   0� 

3.4 

3.5 
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5.	 Las siguientes funciones de transferencias son de sistemas 
realimentados. Determine el error de estado estable para 

entradas pulso unitario, rampa y parábola  
t
2  

μ�t�. 

5.1 	 G�s� = 
1

s2 + s + 2	

H�s� = 
1

�s + 1�

5.2 	 G�s� = 
1

s�s + 5� 		

H�s� = 5

 
5.3 	 G�s� = 

1
s2�s + 10�	

H�s� = 
s + 1
s + 2

5.4 	 G�s� = 
s + 4

s4 + 16s3 + 48s2 + 4s + 4 	

H�s� = 
10

s + 5 

6. Para los diagramas de bloques mostrados a continuación, 
determine el error de estado estacionario en términos de las 
constantes K y Kt, así mismo determine e�t� cuando y r�t� = 
tμ�t� y e�t� para r�t� = 0 y n�t� = μ�t�. 
         

6.1

+ -+ -
+ s02.01+  

)25(2 +ss
K

 sKt

 )(sR  )(sE

 )(sN

R�s�

N�s�

E�s�

Figura del problema N° 6.1.
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 6.2      

7.	 Determine en cada caso el modelo de respuesta del sistema 
de segundo orden; para ello encuentre Ϛ y ωn.

7.1	  Sp = 10% y td =0,05seg.
	
7.2	  Sp = 20% y td =0,01seg. 

7.3	  Sp = 10% y ts =0,01seg. 

7.4 	 Sp = 4% y tr =0,05seg.

7.5 	 Sp = 15% y tr =0,08seg. 

8. Para el sistema mostrado a continuación: 

R�s� Y�s�ωn
2

s2�s + 2Ϛωn�
Gc−+

Figura del problema N° 6.2

E�s�
K�s + 3�

s2�s + 25�
s + α

s

R�s� C�s�

N�s�

−+ −++
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Determine el error de estado estacionario para cuando GC 
sea:

8.1	 GC = kp

8.2	 GC = 
kp

s 

8.3	 GC = skp

8.4	 GC = kp �1 + s + 
1
s 

�

8.5	 GC = kp �1 + 
1
s 

�

9. Repita el problema n° 8 para el sistema mostrado a continua-
ción: 

R�s� Y�s�
Gc

k�s − 1�
s�s + 1��s + 2�−+
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Introducción
Desde los estudios de ecuaciones diferenciales con coefi-

cientes constantes, aprendimos que la solución homogénea 
corresponde a la respuesta transitoria de un sistema y ésta de-
pende de las raíces de la ecuación característica. Básicamente, 
el diseño de un sistema de control podría ser considerado como 
un problema de arreglo en la ubicación de los polos y ceros en 
la función de transferencia, tal que el sistema se desempeñará 
de acuerdo con las especificaciones preestablecidas.

Entre muchas formas de especificaciones de desempeño 
usadas en el diseño de sistemas de control, el más importante 
requerimiento es que el sistema debe ser estable. Un sistema 
inestable es generalmente considerado inútil.

Al diseñar un sistema de control, se debe ser capaz de pre-
decir el comportamiento dinámico a partir del conocimiento de 
sus componentes. La característica mas importante del com-
portamiento dinámico de un sistema de control, es la estabi-
lidad absoluta, es decir si un sistema es estable o inestable; un 
sistema de control está en equilibrio, si en ausencia de cual-
quier perturbación o entrada, la salida permanece en el mismo 
estado. Un sistema de control lineal e invariante en el tiempo es 
estable si la salida termina por regresar a su estado de equili-
brio cuando el sistema está sujeto a una condición inicial. 

Un sistema de control lineal e invariante en el tiempo es crí-
ticamente estable si las oscilaciones en la salida continúan en 

CAPÍTULO 6

ANÁLISIS DE ESTABILIDAD DE LOS 
SISTEMAS DE CONTROL
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forma indefinida. Es inestable si la salida diverge sin límite a 
partir de su estado de equilibrio cuando el sistema está sujeto a 
una condición inicial. 

En realidad la salida de un sistema físico puede aumentar 
hasta un cierto grado, pero puede estar limitado por detencio-
nes mecánicas o el sistema puede colapsarse o volverse no li-
neal una vez que la salida excede cierta magnitud por lo cual ya 
no se aplicarían las ecuaciones diferenciales lineales.

 Aparte de la estabilidad absoluta se debe considerar cui-
dadosamente la estabilidad relativa, ésta representa la medi-
da cuantitativa de la rapidez con que la respuesta transitoria 
tiende a cero. Cuanto menor sea el tiempo en estabilizarse la 
respuesta, el sistema es más estable relativamente.

Por las razones anteriormente expuestas en este capítulo 
estudiaremos el concepto de estabilidad y los métodos para de-
terminar la estabilidad de un sistema.

Concepto de estabilidad
Antes de definir la estabilidad de un sistema, haremos una 

breve explicación de la relación de la ecuación característica 
con los polos y ceros, veamos el modelo del sistema de control 
en la Figura n° 77, donde la ganancia del sistema es:

 
Y�s�
R�s�

 =  
G�s�

1 + G�s�H�s�

Fig. 77. Modelo de sistema de control realimentado.

Y�s�E�s�
G�s�

H�s�

R�s�

−+
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La ecuación característica queda definida como:

f�s� = 1 + G�s�H�s� = 0	 G�s�H�s� = 
KQ�s�
P�s�    

⇒

f�s� = P�s� + KQ�s� = 0,				              (109)

donde Q�s� es un polinomio de grado n de la ecuación caracte-
rística en s y sus raíces son llamadas ceros, P�s� es un polinomio 
de grado m y sus raíces son llamadas polos, el cual analizare-
mos con detalle a continuación.

Un sistema lineal invariante en el tiempo es estable si: 
a.	 Ante una entrada acotada responde con unan salida acotada.
b.	 Si todos los polos de la función de transferencia están en 

el semiplano negativo de s, es decir, tienen la parte real 
negativa.

La localización de polos de un sistema en el plano s repre-
senta la respuesta transitoria resultante. Los polos en el plano 
derecho de s dan como resultado una respuesta decreciente 
para entradas de perturbación. Análogamente, los polos en eje 
jω y en el plano derecho de s dan como resultado una respuesta 
neutral y otra creciente, respectivamente, para una entrada de 
perturbación, por tal razón la zona de estabilidad de un sistema 
dinámico es el semiplano izquierdo del plano de s. 

Por esto la condición necesaria y suficiente para que un 
sistema realimentado sea estable es que todos los polos de la 
función de transferencia del sistema tengan partes reales ne-
gativas, ubicados en el semiplano izquierdo de s, si la ecuación 
característica tiene raíces simples sobre el eje jω con respecto a 
las raíces del lado izquierdo del plano, el sistema se denomina 
marginalmente estable, así mismo para que un sistema reali-
mentado sea inestable bastará que la ecuación característica 
tenga al menos una raíz en el lado derecho del plano s. Véase la 
Figura n° 78 las zonas de estabilidad en el plano s.
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Nuestro problema ahora es determinar la estabilidad de un 
sistema de control, para ello existen varios métodos para deter-
minar la estabilidad de un sistema realimentado, estos involu-
cran las raíces de la ecuación característica. Los métodos más 
utilizados para estudiar la estabilidad de sistemas de control 
son:
1.	 Criterio de Routh–Hurwitz.
2.	 Criterio de Nyquist.
3.	 Método de Diagrama de Bode.

Es evidente que para el análisis de los sistemas de control, 
se presentan métodos alternativos que resuelven el mismo pro-
blema, el diseñador simplemente selecciona el método a utili-
zar que considere que es la mejor herramienta, dependiendo de 
la situación particular que enfrenta. En lo particular, preferimos 
los dos primeros, sin desmeritar y quitar la importancia al dia-
grama de Bode.

Fig. 78. Regiones de estabilidad en el plano s.

REGIÓN 
ESTABLE

REGIÓN 
ESTABLE

REGIÓN 
INESTABLE

REGIÓN 
INESTABLE

Jω

σ0

Plano s
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Métodos para determinar la estabilidad 

Criterio de Routh-Hurwitz
Es un método algebraico que ofrece información sobre la es-

tabilidad absoluta de un sistema lineal invariante en el tiempo 
que tiene una ecuación característica con coeficientes constan-
tes. El criterio prueba la estabilidad absoluta para cualquiera 
de las raíces de la ecuación característica situadas en el lado 
derecho del plano s, también indica para el número de raíces 
situadas en el eje jω y en el lado derecho del plano s.

Tabulación de Routh 
Para construir la tabulacion de Ruth se basa en ordenamien-

to de los coeficientes de la ecuación característica f�s� = ansn + 
an−1sn−1 + .......... + a1s + a0 = 0 tomando una lista o arreglo como 
sigue a continuación: 

sn	 an	 an−2	 an−4    ..................

sn−1	 an−1	 an−3	 an−5    ..................

Una regla nemotécnica consiste en tomar el inicial y luego 
saltar un coeficiente y seleccionar el otro que sigue hasta que 
se agoten los coeficientes, luego se empieza por el siguiente que 
no fue seleccionado en el paso anterior y se repite el mismo 
proceso para completar las dos filas principales, los arreglos 
subsiguientes basados en cálculos sencillos con el uso de la si-
guiente fórmula: 

− 
1

an−1  

 Det� 
an	 an−2

an−1	 an−3 
�

veamos cómo es el proceso.
Sea la ecuación característica:

f�s� = a6s6 + a5s5 + a4s4 + a3s3 + a2s2 + a1s + a0  = 0

Construimos las dos filas principales por selección alterna-
da: 
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s6 	 a6 	 a4 	 a2 	 a0

s5 	 a5 	 a3 	 a1 	 0

Luego necesitamos realizar cálculos sencillos para encon-
trar los siguientes grados que se indican a continuación:

s6 	 a6 	 a4 	 a2 	 a0

s5 	 a5 	 a3 	 a1 	 0
s4 	 A 	 B 	 a0 	 0

s3 	 D 	 E 	 0 	 0

s2 	 F 	 a0 	 0 	 0

s	 G	 0	 0	 0

s0	 a0	 0	 0	 0

A=                          ;
a5 a4 − a6 a3

a5

B=                         ;
a5 a2 − a6 a1

a5

F=                  ;
DB − AE

D

G=                  ;
E − Da0

F

a0=                    ;
Da0 − A.0

D

a0=                    ;
Ga0 − F.0

G

                        = 0
A.0 − a5 0

A

E=                         ;
Aa1 − a5 a0

A
D=                         ;

Aa3 − Ba5

A

C=
a5 a0 − a6 0

a5

= a0

Las raíces de la ecuación característica estarán en el semi-
plano izquierdo, si todos los elementos de la primera columna 
tienen el mismo signo, así mismo el número de cambios de sig-
nos en los elementos de la primera columna equivale al número 
de raíces con parte real positiva o en el semiplano derecho.
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El criterio establece que para que un sistema sea estable, 
requiere que no haya cambios de signos en la primera colum-
na de la tabulación, éste es un requisito necesario y suficiente; 
sin embargo, existen casos especiales donde se debe adecuar o 
modificar el procedimiento de cálculo que veremos con detalle 
a continuación.

Ejemplo 1
Determine la estabilidad del sistema, cuya ecuación caracte-

rística es dada:

f�s� = 2s4 + s3 + 3s2 + 5s + 10 = 0

s4 	     2 	  		    3 	 10	
		

s3 	     1 	  		    5 	   0

s3                                   = −7
�1��3� − �2��5�

1
 	

10	   0

s                                            = 6.43
��−7��5� − �1��10��

−7
 	

  0	   0

s0 	     10 	  		    0 	   0
Hay cambios de signos en la primera columna de la tabula-

ción de Routh, la ecuación tiene dos raíces en el lado derecho 
del plano s, por lo tanto el sistema es INESTABLE. Usando el 
criterio de Routh – Hurwitz.

Casos especiales 
Caso n° 1. Cuando el primer elemento de una fila es 
cero

Si un cero aparece en el primer elemento de la fila, la tabu-
lación de Routh no debe continuar, para remediar la situación, 
debemos reemplazar el cero por un número positivo muy pe-
queño ε y se continua con el proceso de la tabulación de Routh
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Ejemplo 2
Sea el sistema  f�s� = s4 + s3 + 2s2 + 2s + 3 = 0 		   
Veamos:

s4 	 1 	 2 	 3
s3 	 1 	 2 	 0
s4 	 0 	 3

Luego se sustituye por ε y queda:
s4 	 1 	 2 	 3
s3 	 1 	 2 	 0
s4 	 ε 	 3

s    2s − 3
ε 	

0

s0 	 3
Dos cambios de signos, el coeficiente de s es negativo.

Caso n° 2. Cuando toda una fila es cero
Cuando toda la fila son ceros, se debe usar una ecuación 

auxiliar A�s� =0, está formada por la fila justo arriba a la de ce-
ros, luego se deriva la ecuación auxiliar y los coeficientes resul-
tantes de esa operación se sustituyen en la fila de ceros, luego 
se continua con el procedimiento de Routh.

Ejemplo 3
Considere la ecuación característica de un sistema de con-

trol.
f�s� = s5 + 4s4 + 8s3 + 8s2 + 7s + 4 = 0

La tabulación: 
s5 	 1 	 8 	 7 	
s4 	 4 	 8 	 4
s5 	 6 	 6
s2 	 4 	 4	
s 	 0 	 0
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Se usa la ecuación auxiliar: 
		  A�s� = s2 + 4 = 0
Luego,
		

dA�s�
dt = 8s + 0 

Se sustituyen estos coeficientes en la fila de ceros y queda:
s5 	 1 	 8 	 7
s4 	 4 	 8 	 4
s3 	 6 	 6
s2 	 4 	 4
s 	 8 	 0
s0 	 4 	

No hay cambios de signo, por tanto por el criterio de Routh 
el sistema es ESTABLE

Ahora analicemos los parámetros de un sistema usando el 
criterio de Routh–Hurwitz. En este caso se involucran las cons-
tantes del sistema y se determina el intérvalo de valores que 
deben de tomar para que el sistema sea estable.

Ejemplo 4

Sea G�s�H�s� = 
K

s�s2 + 2s + 2��s + 2�

La ecuación característica es: 

f�s� = s4 + 4s3 + 6s2 + 4s + K = 0 

La tabulación de Routh.
s4 	 1 	 6 	 K
s3 	 4 	 4	 0
s2 	 5 	 K

s   
20 − 4K

5
s0 	 K 	
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Para que el sistema sea estable debe cumplirse que K > 0 y 
20 − 4 K > 0 resolviendo el sistema de inecuaciones se obtiene 
K > 0 y K > 5, esto implica que el sistema es estable para los 
valores de dentro del intervalo K < 0 < 5, para K = 5 el sistema 
se vuelve oscilatorio, lo que quiere decir que es marginalmente 
estable. 

Ejemplo 5
Sea el sistema f�s� = s3 + 3Bs2 + 2s + K = 0. 
La tabulación de Routh;

s3 	 1 	 2	 0
s2 	 3B 	 K	 0

s   
6B − K

3B 	
0

s0 	 K 	
Para que el sistema sea estable debe cumplirse 3B  > 0 K > 0 

y 6B − K > 0, esto implica que tenemos las inecuaciones B > 0,  K 
> 0  y K > 6B, la región de estabilidad es mostrada en la Figura 
n° 79, para que el sistema sea estable B y K sólo pueden tomar 
valores dentro de la zona de estabilidad sin incluir los bordes, 
B > 0,  K > 0  y K > 6B. 

Criterio de Nyquist 
Determina la estabilidad de un sistema a lazo cerrado a par-

tir de la respuesta de frecuencia en lazo abierto y los polos a 
lazo abierto, por esta razón podemos decir que es un método 
semigráfico que suministra información sobre la diferencia en-
tre el número de polos y ceros de la función de transferencia 
de lazo cerrado o realimentado que se encuentran en el lado 
derecho del plano s.

Antes de explicar el criterio de Nyquist, es necesario desa-
rrollar los diagramas polares que permiten graficar la respues-
ta de frecuencia de un sistema realimentado, estos diagramas 
son útiles para investigar la estabilidad del sistema y será de 
mucha ayuda en la construcción de la gráfica de Nyquist.
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Diagramas polares: el diagrama polar de una función 
transferencia Gt�jω� es una gráfica de magnitud respecto a 
un ángulo de fase de Gt�jω�, cuando ω varía de cero a infinito, 
por tanto se define como el lugar geométrico de los vectores               
�Gt�jω��∠Gt�jω� cuando ω varía de cero a infinito, los ángulos 
polares serán positivos si se miden en sentido contrario a las 
agujas del reloj y negativos si van en el mismo sentido de las 
agujas del reloj a partir del eje real positivo.

Veamos ahora el análisis de gráficas polares de los tipos de 
control realimentado.

Caso n° 1. Sistema con dos polos reales
La función de transferencia a lazo abierto es:

Fig. 79. Zona de estabilidad para el sistema del Ejemplo 5.

1

1

2

2

3

4

5

6

K

K < 6B

Zona de 
estabilidad

Zona de 
inestabilidad
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 G�s�H�s� = K
�T1s + 1��T2s + 1�

Analizamos primero la función haciendo el cambio de s = jω, 
nos queda:

G�jω�H�jω� = K
�T1 jω + 1��T2 jω + 1�

 Ahora observemos los valores que toma la función cuando 
ω tiende a cero y cuando tiende a infinito.

G�jω�H�jω� =�
K ∠ 0	 ω→0

 0 ∠ −180	 ω→∞
De igual forma se puede construir una tabla de valores para 

esta función en el intervalo (0, ∞) y graficar con el módulo y 
ángulo para cada valor dado a la función.

Veamos la Figura n° 80 donde se muestra el diagrama polar 
de este tipo de sistema. 

 

 

Fig. 80. Diagrama polar para un sistema de dos polos reales.
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Caso n° 2 Sistema con dos polos reales y un polo en el 
origen

La función de transferencia a lazo abierto es:

G�s�H�s� = 
K

�T1s + 1�s

Analizamos primero la función haciendo el cambio de s = jω, 
nos queda:

G�jω�H�jω� = K
�T1jω +1�jω

Ahora observemos los valores que toma la función cuando ω 
tiende a cero y cuando tiende a infinito.

G�jω�H�jω� =�
∞ ∠ −90	 ω→0

 0 ∠ −180	 ω→∞
También se puede construir una tabla de valores para esta 

función variando ω en el intervalo (0,∞) y graficar con el modu-
lo y ángulo para cada valor dado a la función, para obtener una 
gráfica mucho más exacta.

Véase la Figura n° 81, donde se muestra el diagrama polar de 
este tipo de sistema.

Otro ejemplo para este tipo de caso, pero cuatro polos y uno 
en el origen. Sea el sistema:

G�s�H�s� = 
K

s�T1s + 1��T2s + 1��T3s + 1�

Analizamos primero la función haciendo el cambio de s = jω, 
nos queda:

G�jω�H�jω� = 
K

jω�T1jω + 1��T2jω + 1��T3jω + 1�

Veamos los valores que toma la función cuando ω tiende a 
cero y cuando tiende a infinito.

G�jω�H�jω� =�
∞ ∠ −90	 ω→0

 0 ∠ −360	 ω→∞



218218 Capítulo 6. Análisis de estabilidad de los sistemas de control. 

 +∞=ω

 += 0ω

 xω

Fig. 82. Diagrama polar el sistema de la ecuación

 
G�jω�H�jω�= 

K
jω�T1jω + 1��T2jω + 1��T3jω + 1� . 

 += 0ω

 +∞=ω

Fig. 81. Diagrama polar para el caso n° 2.

Veamos la Figura n° 82, donde se muestra el diagrama polar 
de este tipo de sistema:
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Obsérvese que el corte ωx se puede calcular cuan-
do Im�G�jω�H�jω�� = 0 y el corte con el eje imaginario Re 
�G�jω�H�jω�� = 0.

Caso n° 3. Polos reales y dos en el origen
Sea el sistema 

G�s�H�s� = 
K

s2�T1s + 1��T2s + 1��T3s + 1�

Analizamos primero la función haciendo el cambio de s = jω, 
nos queda:

G�jω�H�jω� = 
K

�jω�2�T1jω + 1��T2jω + 1��T3jω + 1�

Análogamente hacemos el proceso anterior y obtenemos:

G�jω�H�jω� =�
∞ ∠ −180	 ω→0

 0 ∠ −360	 ω→∞

Veamos la Figura n° 83, el diagrama polar del sistema:

0

-90

-180

-270

-360

Fig. 83. Diagrama polar para el sistema del Caso n° 3.
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Veamos el caso con un cero real, observemos el cambio en el 
diagrama polar:

G�s�H�s� = 
K�T4s + 1�

s2�T1s + 1��T2s + 1��T3s + 1�
;

Analizamos primero la función haciendo el cambio de s = jω, 
nos queda:

G�jω�H�jω� = 
K�T4jω + 1�

�jω�2�T1jω + 1��T2jω + 1��T3jω + 1�

Luego analizamos ω cuando tiende a cero y a infinito.

G�jω�H�jω�  = �
∞ ∠ −180	 ω→0

 0 ∠ −360	 ω→∞
Veamos la Figura n° 84, el diagrama polar del sistema:

-270

-180

-90

-360
 xω

Fig. 84. Diagrama polar para un sistema del caso n° 3 con un cero real.

Ahora estamos listos para analizar la estabilidad usando el 
criterio Nyquist, para ello definiremos la trayectoria de Nyquist, 
para analizar los sistemas de control lineales, se supone que el 
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contorno cerrado en el plano s encierra el semiplano derecho 
de éste. El contorno esta formado por el eje jω completo desde 
ω =−∞   a   ω = ∞, y una trayectoria circular de radio infinito en 
el semiplano derecho de s. Dicho contorno se conoce como la 
trayectoria de Nyquist (La trayectoria se forma en sentido de 
las agujas del reloj).

Cuando la función de transferencia de lazo abierto G�s�H�s� 
tiene n polos en el semiplano derecho de s, para ser estable el 
sistema, el lugar geométrico de G�s�H�s� debe rodear n veces el 
punto −1 + 0j en sentido contrario a la agujas del reloj, se traza 
la trayectoria de Nyquist modificada en el sentido de la agujas 
del reloj.

Para aplicar el criterio de Nyquist el diagrama polar debe di-
bujarse desde ω = −∞   a   ω = ∞, para ello se debe completar 
el diagrama, dibujando la parte negativa de diagrama polar, se 
debe utilizar el conjugado del diagrama polar de la parte positi-
va, ésta es simétrica a la curva del diagrama polar para valores 
positivos de ω y uniendo los dos diagramas forman un círculo 
de radio infinito.

Criterio de Nyquist expresa:
Z = N + P 						              (110)

donde,
N = Números de rodeos en sentido de las agujas del reloj al 

punto −1 + 0J.
N = Números de polos de G�s�H�s� en el semiplano derecho 

de s.
Z = Número de ceros de G�s�H�s� en el semiplano derecho 

de s.
Si la trayectoria de Nyquist encierra Z ceros y P polos, no 

pasa por los polos ni los ceros de f�s� en sentido de las agujas 
del reloj, el contorno rodea un circulo de N = Z − P veces al pun-
to  −1 + 0J en sentido de las agujas del reloj (Los valores negati-
vos implican el sentido contrario a las agujas del reloj).
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Si P no es cero, para un sistema de control estable, se debe 
tener Z = 0 o N = −P, lo cual indica que debe tener P rodeos en 
el punto −1 + 0J en el sentido de las agujas del reloj, si G�s�H�s� 
no tiene polos en el semiplano derecho de s, entonces Z = N por 
lo tanto, para que haya estabilidad, no debe haber rodeos a −1 
+ 0J.

Análisis de estabilidad usando el criterio de Nyquist
Para el análisis de estabilidad se presentan tres casos usan-

do el criterio de Nyquist establece las siguientes condiciones:
1.	 El punto −1 + 0J no está rodeado, lo que implica que el 

sistema es estable si no hay polos en el semiplano derecho 
de s en caso contrario el sistema es inestable.

2.	 El punto −1 + 0J es rodeado una o varias veces en sentido 
contrario a las agujas del reloj, el sistema es estable si 
el número de rodeos es igual a número de polos en el 
semiplano derecho de s; en caso contrario el sistema es 
inestable.

3.	 El punto −1 + 0J queda rodeado en una o varias veces en 
sentido de las agujas del reloj diremos que el sistema es 
inestable.

A continuación damos algunos ejemplos donde se dibujarán 
la trayectoria de Nyquist y haremos el análisis de estabilidad 
usando el criterio de establecido por Nyquist.

Ejemplo 6
Determine la estabilidad del sistema a lazo cerrado si la fun-

ción a lazo abierto es:

G�s�H�s� = K
�T1s + 1��T2s + 1�

,

tomamos T1, T2 como constantes positivas.
Use el criterio de Nyquist para determinar la estabilidad del 

sistema.
Primer paso: construir el diagrama polar y la trayectoria de 

Nyquist.
Analizamos primero la función haciendo el cambio de s = jω, 



223Alí José Carrillo Paz

nos queda:

G�jω�H�jω� = 
K

�T1jω + 1��T2jω + 1�

-270

-360

-90

-180  K
 +∞=ω

 += 0ω
-1

Grafico Polar Simetrico

Fig. 85. Diagrama polar del ejemplo n° 6.

Gráfico polar 
simétrico

El diagrama polar simétrico es el conjugado del diagrama 
polar de la parte positiva, es una curva que forma el círculo de 
radio infinito en sentido de las agujas del reloj, este define la 
trayectoria de Nyquist.

Segundo paso: analizamos la estabilidad usando el criterio 
de Nyquist.
1.	 La función G�jω�H�jω� = 

K
�T1jω + 1��T2jω + 1�

,
 

no tiene 

polos en el semiplano derecho de s.
2.	 El punto −1 + 0J no está rodeado por el lugar geométrico de 

G�jω�H�jω� para cualesquiera valores de K T1, T2 positivos.
Aplicando el criterio Nyquist, condición n° 1, se concluye 

que el sistema es ESTABLE.
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Ejemplo 7
Determine la estabilidad del sistema a lazo cerrado si la fun-

ción a lazo abierto es:

G�s�H�s� = 
K

s�T1s + 1��T2s + 1�

Use el criterio de Nyquist para determinar la estabilidad del 
sistema.

Primer paso: construir el diagrama polar y la trayectoria de 
Nyquist.

Analizamos primero la función haciendo el cambio de s = jω, 
nos queda:

G�jω�H�jω� = 
K

jω�T1jω + 1��T2jω + 1�

Para valores de K pequeño, la gráfica que a continuación 
mostramos, la obtenemos haciendo el análisis de ω para valo-
res que tienden a cero y a infinito:

Para valores de K grandes, la gráfica que obtenemos es:

-270

-360

-90

-180

 +∞=ω

 += 0ω

Grafico Polar Simetrico

-1

Gráfico polar 
simétrico

Fig. 86. Diagrama polar para K pequeño del ejemplo 7. 
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Segundo paso: analizamos la estabilidad usando el criterio 
de Nyquist.

Primero analizamos para valores de K pequeños.

1.	 La función G�jω�H�jω� = 
K

jω�T1jω + 1��T2jω + 1�
, no tiene 

polos en el semiplano derecho de s.
2.	 El punto −1 + 0J no está rodeado por el lugar geométrico de 

G�jω�H�jω�.
3.	 Para cualesquiera valores de K, T1, T2 positivos, implica N = 

0, N = 0, P = 0.
Aplicando el criterio Nyquist condición n° 1, se concluye que 

el sistema es ESTABLE.
En segundo Término analizamos para valores de K grandes.

1.	 La función G�jω�H�jω� = 
K

jω�T1jω + 1��T2jω + 1�
, no tiene 

polos en el semiplano derecho de s.

-270

-360

-90

-180

 +∞=ω

 += 0ω

Grafico Polar Simetrico

-1

Fig. 76. Diagrama polar para K grande del ejemplo n°7.

Gráfico polar simétrico
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2.	 El punto −1 + 0J esta rodeado dos veces en sentido de las 
agujas del reloj por el lugar geométrico de G�jω�H�jω� si 
hay dos rodeos y no hay ceros esto implica que la fórmula 
N = Z − P, N = 2.

3.	  Para cualesquiera valores grandes de K positivos, implica 
N = 2, Z = 2, P = 0 el criterio Nyquist la condición n° 3, se 
concluye que el sistema es INESTABLE.

Ejemplo 8
Determine la estabilidad del sistema a lazo cerrado si la fun-

ción a lazo abierto es:

G�s�H�s� = 
K�T2jω + 1�
s�T1jω + 1�

.

Use el criterio de Nyquist para determinar la estabilidad del 
sistema.

Primer paso: construir el diagrama polar y la trayectoria de 
Nyquist.

Analizamos primero la función haciendo el cambio de s = jω, 
nos queda:

G�s�H�s� = 
K�T2jω + 1�
s�T1jω + 1�

El gráfico lo obtenemos haciendo que ω tienda a cero y a infi-
nito o construyendo la gráfica para valores dentro del intérvalo 
�−∞, ∞�, cabe destacar que primero mostramos la Figura n° 88 
para valores de K grandes en y, luego mostramos la Figura n° 
89 para valores de K pequeños. El análisis lo haremos de ma-
nera individual para estudiar la estabilidad del sistema, porque 
presentan dos alternativas a considerar, análogamente como 
lo realizamos en el ejemplo n° 7, debemos de tener cuidado al 
dibujar es te tipo de gráfica de Nyquist, porque cuando hay un 
polo en el lado derecho del plano complejo debemos de cerrar 
el círculo del lado izquierdo y en el mismo sentido de la agujas 
del reloj, si encerramos el polo que se encuentra en plano posi-
tivo s, no estaríamos dibujando correctamente la trayectoria de 
Nyquist y no podremos analizar correctamente, veamos ahora:
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Para valores de K pequeños:

-1

-270

-360

-90

-180

 +∞=ω

 += 0ω

Grafico Polar Simetrico

Fig. 88. Diagrama polar para valores de K grande del ejemplo n° 8.

Gráfico polar 
simétrico

-1

-270

-360

-90

 +∞=ω

 += 0ω

Grafico Polar Simetrico

Fig. 89. Diagrama polar para valores de K pequeño del ejemplo n° 8.

Gráfico polar 
simétrico
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Segundo paso: analizamos la estabilidad usando el criterio 
de Nyquist.

Primero analizamos para valores de K pequeños:

1.	 La función G�jω�H�jω� = 
K�T2jω + 1�
jω�T1jω − 1�

, tiene un polo en el 

semiplano derecho de s.
2.	 El punto −1 + 0J está rodeado una vez en el sentido de las 

agujas del reloj por el lugar geométrico de G�jω�H�jω� para 
cualesquiera valores de T1, T2 positivos.

Aplicando el criterio Nyquist condición n° 3, se concluye que 
el sistema es INESTABLE.

En segundo término analizamos para valores de K grandes.

1.	 La función G�jω�H�jω� = 
K�T2jω + 1�
jω�T1jω − 1�

 tiene un polo en el 

semiplano derecho de s.
2.	 El punto −1 + 0J está rodeado una vez en sentido contrario 

a las agujas del reloj por el lugar geométrico de G�s�H�s� , 
donde el número de rodeos es igual al número de polos en 
el semiplano derecho de s para cualesquiera valores de T1, 
T2 positivos.

Aplicando el criterio Nyquist condición n° 2, se concluye que 
el sistema es ESTABLE.	

Determinación de estabilidad usando Matlab
Para el uso de la herramienta Matlab, sólo se debe usar la 

instrucción:
>nyquist(nun,den); hagamos un ejemplo en el uso de esta 

instrucción.

Ejemplo 9
Sea la función de transferencia simple:

	 G�s�H�s� = 
K

�0.1s + 1��0.2s + 1�
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 A continuación utilizaremos el software matemático Matlab 
donde utilizaremos los comandos relacionados con el criterio 
de Nyquist, para ello es necesario seguir los siguientes pasos: 

 Ejecutamos el programa Matlab y escribimos la instrucción 
de la siguiente manera.

To get started, select “MATLAB Help” from the Help menu.
>> nun=�0 0 0.4�;
>> den=�0.02 0.3 1�;
>> nyquist(nun,den)
Al ejecutar las instrucciones obtenemos la gráfica de Nyquist:

Fig. 90. Gráfico polar usando Matlab.

Diagrama de Nyquist
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Este gráfico es análogo al modelo desarrollado en el Capítulo 
6, primer caso.
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PROBLEMAS 

1. Usando el criterio de Routh- Horwitz determine la estabili-
dad de los siguientes sistema:

1.1	  G�s�H�s� = 
K

s2 + 5s + 5

1.2 	 G�s�H�s� = 
100�s − 1�

�s − 5�� s2 + 2s + 2�

1.3 	 G�s�H�s� = 
100

s3 − 5s2 + 3s + 10

1.4 	 G�s�H�s� = 
K�s − 1�

 s4 + 3s3 + 50s2 + s + 10

1.5 	 G�s�H�s� = 
K�s − 1�

�s − 5�� s2 + 2�

2. Para cada una de las ecuaciones características de los siste-
mas de control dados a continuación dados, determine el inter-
valo de estabilidad de K para que el sistema sea estable.

2.1 	 f�s� = s3 + �K + 2�s2 + 2Ks + 10K = 0 

2.2 	 f�s� = s4 + Ks3 + 5s2 + 10s + 10 = 0

2.3 	 f�s� = s4 + Ks3 + 2s2 + �K + 1�s + 10 = 0

2.4 	 f�s� = s3 + 20s2 + 5s + 10 = 0

3. La función de transferencia a lazo simple de un sistema de 
control realimentado esta dado por:

G�s�H�s� = 
K�s − 5�

s�s + 2�� Bs + 1�
,
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donde los parámetros K y B pueden ser representado en plano 
K en el eje horizontal y B en el eje vertical, encuentre la zona de 
estabilidad del sistema.

4. Para el diagrama de bloque de un motor con tacómetro 
de realimentación mostrado en la Figura n° 60, determine el 
intervalo de Kt para que el sistema sea estable.

Fig. 91. Diagrama de bloque del problema n° 4.

10

R�s� Y�s�

Kts

100
s�s + 5�� s + 10�−+ −+

5. Para los sistemas de control realimentados donde G�s�H�s� 
donde son dados a continuación, determine la estabilidad siste-
ma usando el criterio de Nyquist.

5.1	  G�s�H�s� = 
K�s − 1�

s�s + 2��s + 5��s + 15�

5.2 	 G�s�H�s� = 
K�s + 2�

s�s3 + 3s + 1�

5.3  	G�s�H�s� = 
K

s2�s − 2��s + 10�

5.4  	G�s�H�s� = 
K�s + 10�

s�s − 1��s + 1000�

5.5  	G�s�H�s� = 
K�s + 1�

s�s2 − 7s + 12�
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Introducción
La respuesta transitoria de un sistema realimentado se rela-

ciona con la ubicación de las raíces de la ecuación característica 
del sistema, por lo tanto se puede describir el comportamiento 
de un sistema realimentado (a lazo cerrado) en términos de la 
ubicación de las raíces de la ecuación característica en el plano 
s, donde contiene los polos y ceros del sistema.

Si la respuesta del sistema realimentado puede ajustarse de 
tal forma que pueda conseguirse que éste tenga el comporta-
miento deseado mediante la variación de uno o más paráme-
tros del sistema, resulta muy útil determinar la ubicación de las 
raíces de la ecuación característica del sistema cuando se mo-
difica un parámetro, esto trae como consecuencia que cuando 
un parámetro del sistema es modificado, la ganancia del mismo 
también varía haciendo que las raíces de la ecuación caracterís-
tica se muevan a las posiciones deseadas.

W.R. Evans en 1948 desarrolló un método sencillo para de-
terminar las raíces de la ecuación característica, ampliamente 
utilizado en los sistemas de control, este método se denomi-
na lugar geométrico de raíces, con este método se grafican las 
raíces de la ecuación característica, para todos los valores de 
un parámetro del sistema. El lugar geométrico de raíces es una 
herramienta poderosa para el análisis y diseño de sistemas de 
control realimentado, el cual es el tema central de este capítulo. 
Esta técnica se desarrollará basado en el análisis y propiedades 

CAPÍTULO 7

TÉCNICA DEL LUGAR GEOMÉTRICO DE 
RAÍCES
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para la construcción del lugar geométrico de raíces manual-
mente, así como también se mostrará los dibujos de los lugares 
geométricos de raíces generados con el uso de la herramienta 
computacional Matlab. 

Método de lugar geométrico de raíces
De acuerdo al modelo de sistema de control mostrado en la 

Figura n° 77, en el Capítulo 6 de este texto, sobre la definición 
de estabilidad, en el cual se dedujo la fórmula (109), la cual que-
dó de la forma:

 f�s� = 1 + G�s�H�s� = 0	

G�s�H�s� = 
KQ�s�
P�s�  

⇒ f�s� = P�s� + KQ�s� = 0,

ésta representa la ecuación característica del sistema de con-
trol, si 1 + G�s�H�s� = 0, lo que implica que

G�s�H�s� = −1, 					            (111)

como G�s�H�s� es una cantidad compleja, por lo tanto esta 
ecuación se divide en dos condiciones:

Condición de ángulo:

∠G�s�H�s� = ±π �2k + 1�				          (112)

Condición de magnitud:

�G�s�H�s�� = 1 					            (113)

En muchos casos G�s�H�s� puede contener un parámetro de 
ganancia K, entonces la ecuación característica toma la forma

1 + 
K�s + z1��s + z2�.........�s + zm�
�s + p1��s + p2�.........�s + pm�

 = 0		         (114)

donde las raíces del polinomio del numerador se definen como 
ceros, se denotarán en la gráfica en el plano s como “0” y las 
raíces del polinomio del denominador se denominan polos y se 
denotaran en el plano s como “X”. Entonces los lugares geomé-
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tricos de raíces para el sistema son los polos de lazo cerrado 
cuando la ganancia K varía de cero a infinito.

Para efectos de identificación, se definen las porciones de los 
lugares geométricos de raíces de acuerdo a los valores de K:

RL: porción del lugar geométrico de raíces donde K varía 
desde cero hasta el infinito 0 ≤ K < ∞.

RLC: porción del lugar geométrico de raíces donde K varía 
desde menos infinito a cero −∞ < K < ∞.

RC: contornos de las raíces cuando se varía más de un pará-
metro.

Lugar geométrico de las raíces total: cuando los valores 
de K varían desde menos infinito a infinito, −∞ < K < ∞. 

Propiedades y construcción del lugar geométrico de 
raíces

Las siguientes propiedades son muy útiles para construir el 
lugar geométrico de raíces manualmente, las propiedades se 
desarrollan con base en los polos y ceros de la ecuación carac-
terística.

a)	 Puntos donde K = 0, K  = ±∞ 
Tomando la condición de magnitud:

G�s�H�s�
K  

 = 
Q�s�
P�s�

 = 
1
K

 ⇒ �G�s�H�s�� = 
1

|K|
,  	       (115)

Cuando K tiende a infinito G�s�H�s� tiende a cero, el valor 
de s tiende a los ceros y si K tiende a cero, entonces G�s�H�s� 
tiende a infinito, lo que implica que s tiende a los polos, como se 
muestra en la Figura n° 92.

b)	 Número de ramas
Son curvas continuas que comienzan en cada uno de los po-

los de G�s�H�s� para K > 0, el número de ramas lo determina el 
número de polos o raíces del polinomio del denominador de 
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G�s�H�s� de la forma:

K�s + z1��s + z2�.........�s + zm�
�s + p1��s + p2�.........�s + pn�

 = G�s�H�s�		         (116)

c)	 Ángulos de asíntotas
Para K ≥ 0 (RL), son asintóticas o asíntotas con ángulos se-

gún la ecuación:

ϴi =  
�2i + 1�π

n − m
, 					            (117)

Para K < 0, (RLC) son asintóticas o asíntotas con ángulos se-
gún la ecuación;

ϴi =  
2iπ

n − m					            
(118)

Con i = 1, 2, 3... �n − m� −1
n representa el grado del polinomio del denominador y m el 
grado del polinomio del numerador de la ecuación (116) de 

Fig. 92. Puntos donde los cuales K=0 y K= ±∞.

Plano s

Jw

K = ± ∞
0 x x

K = 0 K = 0
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G�s�H�s�, siempre n > m, la razón estriba en que la mayoría de 
las funciones tienen más polos que ceros. Con n polos y m ce-
ros, se tienen n-m ramificaciones del lugar geométrico de raíces 
aproximándose a los n-m ceros en el infinito. 

d)	 Centro de asíntotas
Éste representa el lugar geométrico de raíces que cae en el 

eje real de s según la ecuación:

 σ = 
∑ polos de G�s�H�s� − ∑ Ceros de G�s�H�s�

n − m
,   (119)

siempre es un número real, el centro de asíntotas representa el 
centro de gravedad del lugar geométrico de raíces.

e)	 Lugar geométrico de raíces en el eje real
Como se explicó en anteriormente RL representa la sección 

del lugar geométrico de raíces donde K ≥ 0, está presente sobre 
el eje real si el número total de polos y ceros de G�s�H�s� a la 
derecha de la sección es impar.

De igual forma CRL, la sección del lugar geométrico de raíces 
donde K < 0, está presente sobre el eje real si el número total 
de polos y ceros de G�s�H�s� a la derecha de la sección es par. 
Cabe destacar que los polos y ceros complejos no contribuyen 
a tipo de lugar geométrico de raíces sobre el eje real. Como se 
muestra en la Figura n° 93.

Fig. 93. Lugar geométrico de raíces sobre el eje real.

Plano s

Jw

0x x x

x

x

RL RL RLCRL CRL
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f)	 Ángulo de salida y llegada del lugar geométrico de 
raíces en polos o cero complejos

Los ángulos de salida y llegada del lugar geométrico de raí-
ces de un cero o un polo de G�s�H�s� denotan el ángulo de la 
tangente del lugar geométrico de raíces cerca del punto, se cal-
culan utilizando la condición de ángulo, de donde se deducen 
las siguientes ecuaciones:

∠G�s�H�s� = ∑
m

i −1
∠�s + pi�− ∑

m

i −1
∠�s + zi� = �2i + 1�π     (120)

		  0 ≤ k < ∞

∠G�s�H�s� = ∑
m

i −1
∠�s + zi�− ∑

m

i −1
∠�s + pi� = 2iπ	        (121)

		  −∞ < k ≤ 0	 para	 i − 0, ± 1, ± 2........

 La interpretación de las ecuaciones 120 y 121, indican que 
cualquier punto s1 sobre RL que corresponde a valores positivos 
de K, debe satisfacer la condición; la diferencia entre las sumas 
de los ángulos vectores dibujados desde los ceros y los polos 
hasta s1, debe ser un múltiplo impar de 180°. Análogamente 
para valores negativos de K, debe satisfacer la siguiente condi-
ción: de que la diferencia entre las sumas de los ángulos de los 
vectores dibujados desde los ceros y los polos hasta s1, debe ser 
un múltiplo par de 180°.

Ahora bien para calcular el valor de K en un punto s1 sobre 
el lugar geométrico de raíces, bastará con aplicar la fórmula si-
guiente:

|K| = 

n

j −1
∏ ��s + pi��
m

i −1
∏ ��s + zi��

 				           (122)   

Evaluándola en el punto s1 y se obtiene el valor numérico de 
K, la ecuación (111) es utilizada para calcular los valores de K 
para cualquier punto en plano s a lo largo del lugar geométrico 
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Aplicando la fórmula (120) suponiendo que K > 0, entonces 
la ecuación queda expresada de la forma;

ϴ1 + ϴ2 + ϴ3 + ϴ4 − ϴ5 = �2i + 1�π, donde los ángulos ϴ1, ϴ2 , 
ϴ4, ϴ5 se pueden determinar usando relaciones trigonométricas 
conocidas, seguidamente se despeja ϴ3 de la ecuación, conside-
rando ϴ2 = 90o, quedando la expresión ϴ3 = �2i + 1�π ϴ1 − 90− ϴ4 
+ ϴ5, lo que determina el valor del ángulo buscado, análogamen-
te si K<0, aplica la fórmula (121) y se determina el valor del 
ángulo buscado.

g)	 Intercepción del lugar geométrico de raíces con el 
eje imaginario

Para el corte con el eje imaginario, se debe aplicar el criterio 
de estabilidad de Routh-Hurwitz para determinar el intervalo 
donde K hace estable al sistema, seguidamente tomando los va-
lores marginales o críticos de K, se sustituye en el polinomio S2 

Fig. 94. Ángulo de apertura y salida en lugar geométrico de raíces.

de raíces desde −∞ < K < ∞ y así analizar el comportamiento del 
sistema gráficamente.

Es importante destacar que cuando se determina un ángu-
lo de salida o llegada de RL de un polo o cero es determinado 
el ángulo de salida o llegada de CRL al mismo punto difiere en 
180°, como se ilustra en la Figura n° 94.
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de la tabulación de Routh y se iguala a cero, las raíces complejas 
de ese polinomio definen el corte con el eje imaginario, si este 
polinomio no tiene raíces complejas no hay corte con este eje.

h)	 Puntos de ruptura o puntos de silla
Los puntos de ruptura sobre el lugar geométrico de raíces de 1 
+ G�s�H�s� = 0, deben cumplir con la condición:
	

dG�s�H�s�
ds

 = 0 					           (123)

Sin embargo, se debe acotar que no todas las soluciones de 
la ecuación (123) son puntos de ruptura, para que sea punto de 
ruptura debe satisfacer la ecuación 1 + G�s�H�s� = 0, esto impli-
ca que debe ser un punto del lugar geométrico de raíces para un 
valor real de K, lo que se infiere las siguientes observaciones:

•	 Todas las soluciones reales, son puntos de rupturas, por-
que el eje real, está contenido en el lugar geométrico de 
raíces

•	 Las soluciones complejas, serán puntos de ruptura si sa-
tisfacen la ecuación característica o están contenidas en 
el lugar geométrico de raíces.

•	 Si �G�s�H�s�� =  
1

|K|
 ⇒ K = −  

1
G�s�H�s�

, de donde se dedu-

ce que 
dK
ds

 = 
dG�s�H�s�

�G�s�H�s��2
 = 0, ⇒ 

dK
ds

 = 
dG�s�H�s�

ds
 = 0

Obsérvese que el ángulo con el que sale o entra un lugar 
geométrico de raíces en un punto de ruptura, dependerá del 
número de lugares geométricos en que está involucrado dicho 
punto, se observa en las Figuras n° 95 y n° 96 que salen o en-
tran con 90°, mientras que en la Figura n° 97, sale con 45°, por 
lo tanto para n lugares geométricos de raíces, ya sean RL o RLC, 
que entran o salen de un punto de ruptura, su ángulo está defi-
nido como 180/n.



241Alí José Carrillo Paz

Fig. 95.  Punto de ruptura sobre el eje real entre dos polos.

Fig. 97. Punto de ruptura sobre el eje real con polos conjugados.

xx

Punto de 
ruptura

Fig. 96. Punto de ruptura sobre eje real entre dos ceros.
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Ejemplo 1
Dibuje el lugar geométrico de raíces para el sistema: 

G�s�H�s� = 
K

s�s − 1��s + 2�

Determine el valor de K para Ϛ  = 0.5.

Solución:
Primer paso: determinación de la ecuación característica.
Usando la ecuación (103), tenemos que: 

1 + G�s�H�s� = 1+ 
K

s�s − 1��s + 2�
 

                          = 0, ⇒ s3 + 3s3 + 2s + K = 0

Segundo paso: determinar los polos y ceros.
Las raíces del polinomio del denominador que representan 

los polos son, s1 = 0, s2 = −1, s3 = −2. 
Las raíces del polinomio del denominador, como no hay raí-

ces, se supone que hay un cero en el infinito, s = ∞.
Tercer paso: número de ramas.
Como hay tres raíces en el denominador hay tres ramas, por-

que el polinomio es de grado tres.
Cuarto paso: centro de asíntotas. 

Aplicamos la fórmula (119), σ = 
0 + 1 − 2

3 − 0  
= 

− 1 
3

, esto repre-

senta el centro de asíntotas.
Quinto paso: ángulos de las asíntotas.
Aplicamos las fórmulas (117) y (118), para K ≥ 0, tenemos:

ϴ0 = 60°

ϴ1 = 180°

ϴ2 = 300°
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Para K < 0 tenemos:

ϴ0 = 0°

ϴ1 = 120°

ϴ2 = 240°

Sexto paso: ángulo de salida y apertura de polos o ceros.
Para nuestro problema este paso se obvia porque no hay po-

los o ceros complejos.
Séptimo paso: corte con el eje imaginario.
Se aplica el criterio de Routh-Hurwitz y la tabulación de 

Routh a la ecuación característica determinada en el primer 
paso.

f�s� = s3 + 3s2 + 2s + K  = 0, 

luego aplicamos la tabulación de Routh,

s3	 1	 2

s2	 3	 K

s	           
6 − K

3
	 2

condiciones  K > 0
6 − K > 0

;
 
de donde la solución es 0 < K < 6.

Tomamos el valor marginal K = 6, y sustituimos en el poli-
nomio 3s2 + K = 0, de la tabulación de Routh, nos queda 3s2 + 
6 = 0, las raíces del polinomio son s1 = 2  j y s2  = − 2 j, éstas 
representan el corte con el eje imaginario.

Octavo paso: puntos de ruptura o silla.
Para calcular los puntos de ruptura aplicamos la ecuación 

(123), por lo tanto queda expresado que:

dK
ds

 = 3s2 + 6s + 2 = 0,

cuyas las raíces son s1 = −1.57 y s2 = −0.42; esto indica que hay 

�
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puntos de ruptura sobre el eje real que satisfacen la ecuación 
(123).

Noveno paso: graficar todo el lugar geométrico de raíces. 
Usando todos los resultados obtenidos en los pasos anterio-

res se dibuja el lugar geométrico de raíces:

Décimo paso: calcular el valor de K para Ϛ = 0.5.
Se levanta una recta que parte del origen con un ángulo cuyo 

valor es arcos (0.5) = 60°, tomando esa inclinación, cuando in-
tercepte el lugar geométrico de raíces, se determina el valor de 
s, tomada de la gráfica es s = −0.20 + j 0.85.

Seguidamente usando la ecuación (122), 

K = �s�s + 1��s + 2��s=−0.2 + j 0.8 = 1.8377

Ejemplo 2
Dibuje el lugar geométrico de raíces del sistema: 

Fig. 98. Lugar geométrico de raíces del sistema K
s�s − 1��s + 2�

X X

K=-�

K=-�

K=�

K=�

K<0

K=0 K=0

K>0

K>0 K<0

K>0

S=j1.414. 
Corte con eje el 
imaginarioS=0.20+j0.85

S=j1.414

S=-0.42, punto 
de ruptura

S=-1.57, punto 
de ruptura

Asíntotas K>0Asíntotas K<0

Asíntotas K>0Asíntotas K>0
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RL 
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-1
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-2
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G�s�H�s� = 
K

s�s2 + 2s + 2��s + 2�
;

Solución:
Primer paso: determinación de la ecuación característica.
Usando la ecuación (103), tenemos:

1 + G�s�H�s� = 1+ 
K

s�s2 + 2s + 2��s + 2�
 = 0, 

		            ⇒ s4 + 6s3 + 10s2 + 8s + K = 0

 Segundo paso: determinar los polos y ceros:
Las raíces del polinomio del denominador que representan 

los polos son, s1 = 0, s2 = − 1 + j, s3 = −1 − j, s4 = −2. 
Las raíces del polinomio del denominador, como no hay raí-

ces, se supone que hay un cero en el infinito, s = ∞.
Tercer paso: número de ramas.
Como hay tres raíces en el denominador hay cuatro ramas, 

porque el polinomio es de grado cuatro.
Cuarto paso: centro de las asíntotas 

Aplicamos la fórmula (119), σ = 
0 − 1 − j −1 + j − 2

4 − 0
 =−1.5, 

esto representa el centro de asíntotas.
Quinto paso: ángulos de las asíntotas.
Aplicamos las fórmulas (117) y (118), para K ≥ 0, tenemos 

ϴi =  
�2i + 1�π

n − m

ϴ0 = 45°

ϴ1 = 135°
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ϴ2 = 225°

ϴ4 = 315°

Para K<0 tenemos ϴi =  
2iπ

n − m
;

ϴ0 = 0°

ϴ1 = 90°

ϴ2 = 180°

ϴ4 = 270°
Sexto paso: ángulo de salida y apertura de polos o ceros.
Dibujamos los polos sobre el eje imaginario y seleccionamos 

un polo complejo, hacemos concurrir una recta desde los de-
más polos hasta un punto muy cercano al polo complejo selec-
cionado, como se muestra en el dibujo a continuación.

 Si tomamos un punto lo más cercano posible al polo, pode-
mos aproximar como si éste estuviese en el polo para calcular 
los ángulos mostrados en la Figura n° 99, porque los ángulos no 
variarán significativamente, y serán aproximadamente los mis-

Fig. 99. Ángulo de apertura y salida de polo complejo 
K

s�s2 + 2s��s + 2�

x x

x

x

JW

−4 −3

ϴ4

ϴ3

ϴ3

ϴ3

−2 −1

−1

−1
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mos que si el punto estuviese en el polo, pero para efectos del 
calculo de K, se debe usar el punto aproximado al polo, porque 
si no el resultado será K = 0. 

ϴ4 = arctg�
1
3

� = 18.43°, 

ϴ1 = 180° − arctg �1�  = 180° − 45° = 135°,  

ϴ2 = 90°

Podemos decir que para i = 1, K > 0 y calculamos el ángulo 
del polo complejo de la forma:

90° + 18.43° + 135° + ϴ1 = 540° 
ϴ1 = 540° − 243.57 
     = 293.97°,  o  
ϴ1 = −63.43°

Séptimo paso: corte con el eje imaginario.
Se aplica criterio de Routh-Hurwitz y la tabulación de Routh 

a la ecuación característica determinada en el primer paso.

f�s� = s4 + 6s3 + 10s2 + 8s + K  = 0, 

y luego aplicamos la tabulación de Routh. Se obtiene:

s4	 1	 10	 K

s3	 6	   8

s2	 8.6	   K

s	             
69.2 − 6K

8.6

s2	 K

Las condiciones para estabilidad:   
K > 0
69.2 − 6K > 0  

∴  La solución es 0< K <11.64
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Tomamos el valor marginal K = 11.64, y sustituimos en el 
polinomio 8.66s2 + K = 0, de la tabulación de Routh, nos queda 
8.66s2 + 11.64 = 0 y las raíces del polinomio son s1 = 1.15 j y s2

  
= − 1.15 j, las cuales representan el corte con el eje imaginario.

Octavo paso: puntos de ruptura o silla.
Para calcular los puntos de ruptura aplicamos la ecuación 

(123), por lo tanto queda expresado que:

dK
ds

 = 4s3 + 18s2 + 20s + 8 = 0, sólo la raíz s1 = −3,0922 

satisface la ecuación (123), las demás raíces no se consideran.
Noveno paso: gráfica del lugar geométrico de raíces.

Fig. 100. Gráfica del lugar geométrico de raíces de 
K

s�s2 + 2s��s + 2�

X

X

X

K<0

K<0JW
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imaginario
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imaginario
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ruptura o de silla

K<0

K<0

K<0

K<0

CRL, K<0 CRL, K<0RL, K<0
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-1
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Ejemplo 3
Dibuje el lugar geométrico de raíces utilizando Matlab para 

el sistema dado por la ecuación:

G�s�H�s� =  
�s + 3�

s4 + 5s3 + 20s2 + 16s

Solución:
>num=�0  0  0  1  3�;
>den=�1  5  20 16 0�;
>rlocus (num,den)

El programa generará la siguiente gráfica:

Fig. 101. Lugar geométrico de raíces utilizando Matlab.
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PROBLEMAS 

1. Dibuje el lugar geométrico de raíces para los sistemas mos-
trados a continuación

1.1	  G�s�H�s� = 
K

s�s + 1��s + 3��s + 5�

1.2 	 G�s�H�s� = 
K�s + 4�
s2�s + 2�3

1.3 	 G�s�H�s� = 
K�s + 1�

s�s2 + 2s + 2�

1.4 	 G�s�H�s� = 
K�s + 4�2

s2�s + 8�2

1.5 	 G�s�H�s� = 
K�2s + 5�

s2�s2 + 2s + 1�

1.6 	 G�s�H�s� = 
K�s + 5�

s�s2 + 3s + 2�

1.7 	 G�s�H�s� = 
K

s�s + 1��s + 3�

1.8 	 G�s�H�s� = 
K

s�s2 + 2s + 2��s + 5� 

2. Demuestre que el lugar geométrico de Raíces para un sistema 

de control con G�s� = 
K�s2 + 6s + 10�

s2 + 2s + 10
 H�s� = 1 es un círculo con 

el centro en el origen y con radio igual a 10  .
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3. Dibuje los lugares geométricos de raíces para el sistema de 

control a lazo cerrado con G�s� = 
K�s + 0.5�
s3 + s2 + 1

 H�s� = 1.

4. Dibuje el lugar geométrico de raíces para un sistema de con-

trol a lazo cerrado con G�s� = 
K�s + 4�

s�s2 + 2s + 2�
 H�s� = 1.

5. Para las ecuaciones características mostradas a continuación, 
dibuje el lugar geométrico de raíces.

5.1 	 f�s� = s3 + 3s2 + �K + 2�s + 5K = 0 

5.2 	 f�s� = s3 + s2 + �K + 2�s + 3K = 0

5.3 	 f�s� = s4 + 8s3 + 16s2 + K�s2 + 4s + 5� = 0

5.4 	 f�s� = s4 + 2s3 + s2 + 2Ks + 5K = 0 
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