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Introduccion

En las ultimas décadas la sociedad industrializada hace un
uso extenso de los sistemas automatizados. Tanto en la vida
cotidiana como en la industria se destacan sistemas de control
que regulan magnitudes de temperatura, presion, flujo, segu-
ridad, electrénica y la robética en lo concerniente al desarro-
llo de microcontroladores y los sistemas inalambricos; hoy en
dia todo es controlado, con el objeto de optimizar y mejorar el
desempefio de los procesos dentro de los sistemas automatiza-
dos manteniéndolos dentro de parametros preestablecidos en
los requerimientos del cliente (Sociedad Industrial). Por ello es
necesario un adecuado estudio de los sistemas a controlar, asf
como también un buen nivel de conocimientos referente al ana-
lisis y disefio de los Sistemas de Control.

El notable desarrollo de la informatica y la electrénica, han
permitido la incorporacién de nuevas técnicas y procedimien-
tos que para un determinado proceso, resuelven problemas de
teoria clasica de control, por su puesto, basandose en los méto-
dos clasicos de disefio implantados a mediados del siglo pasado;
por ello es primordial el estudio preeliminar de la teoria clasica
de control de sistemas, a partir de la relaciéon de entrada-salida.

Por esta causa la ingenieria de sistemas de control forma
parte del plan de estudios de numerosas escuelas de ingenieria,
asi como en facultades de ciencias.

En la actualidad existen numerosas obras de prestigiosos
autores que brindan al estudiante y al profesional un medio
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adecuado para la comprensidn de las técnicas clasicas de con-
trol de los sistemas. Sin embargo, tanto profesores como estu-
diantes de estas asignaturas han demandado la falta de textos
que se adapten de manera organizada a los programas vigentes
en diferentes universidades, de ello no se escapan los cursos
de sistemas de control clasico (teoria de control clasico) que
imparto, lo cual requiero de la recomendacion de varias obras
para abordar el contenido programatico de dicha asignatura.
Aunado a esto, los problemas de traduccién que presentan mu-
chas de estas obras hacen que dificulten la comprension de los
contenidos de la materia.

Este libro esta escrito de acuerdo al contenido usual de un
primer curso de sistemas de control (Teoria Clasica de Control
y sus fundamentos); los capitulos se han estructurado adaptan-
dolos al desarrollo del mencionado curso, desarrolldndose en
ellos los conceptos fundamentales para el andlisis y modelado
de control de sistemas.

La metodologia aplicada en el analisis y disefio de sistemas
de control es producto de la experiencia cosechada en el ambito
industrial en los Departamentos de Proyectos de las empresas
donde presté mis servicios, aunado a ello, lo que por muchos
afios he compartido con mis alumnos en los proyectos de grado,
como asesor académico, lo que me ha dado resultados exitosos,
pero no puedo dejar de expresar la influencia de la metodologia
aplicada por Clint Smith en su libro Disefio de redes.

El libro se ha estructurado en siete capitulos, el primer ca-
pitulo se dedica a la introduccion de los sistemas de control; el
segundo capitulo incluye las bases matematicas fundamentales
(Transformada de Laplace y su aplicacién); el tercer capitulo se
estudia la funcién de transferencia basado en la teoria de dia-
gramas de bloque, graficos de flujo de sefial y las aplicaciones a
las ecuaciones diferenciales o sistemas de ecuaciones diferen-
ciales, también se incorpora la construccion de las ecuaciones
de estado (Variable de Estado), partiendo de una o de un siste-
ma de ecuaciones diferenciales.
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El cuarto capitulo estudia el modelado de los sistemas fisi-
cos, especificamente eléctricos, mecanicos y electromecanicos
donde se destaca su representacion mediante variables de es-
tado y los métodos de solucién para obtener las variables de es-
tado, incorporando la los conceptos de observabilidad y contro-
labilidad de los sistemas. El quinto capitulo realiza un analisis
detallado de las respuestas en el tiempo, los errores de estado
permanente y los controladores en los sistemas. El capitulo seis
trata de los métodos de estudio de la estabilidad de los sistemas
de control. Para finalizar, el capitulo siete desarrolla la técnica
del lugar geométrico de raices, herramienta de gran utilidad
para el andlisis y disefio de sistemas de control retroalimenta-
dos.

La elaboracién de este libro esta orientado a los cursos de
sistemas de control clasico y espero que sea de gran utilidad a
estudiantes y profesores de las catedras en el proceso de apren-
dizaje de la asignatura. También estoy abierto a la critica cons-
tructiva para la mejora de esta obra.

Ali José Carrillo Paz






CAPITULO 1

INTRODUCCION A LOS SISTEMAS DE
CONTROL

Introduccion

El control automatico ha desempefiado un papel muy impor-
tante en el avance de la ingenieria y la ciencia. Ademas de su
aporte en la construccién de los vehiculos espaciales, misiles
teledirigidos y la robética. Los avances en la teoria y la prac-
tica del control automatico ofrecen los fundamentos necesa-
rios para obtener un comportamiento 6ptimo de los sistemas
dindmicos, mejorar u optimizar los procesos con el objeto de
obtener mejores resultados y simplificar el trabajo de muchas
operaciones manuales rutinarias, asi como otras actividades,
la ingenierfa trata de comprender y controlar las fuerzas de la
naturaleza en beneficio de la humanidad. La Ingenieria de Con-
trol se basa en los fundamentos de la teoria de realimentacién y
analisis de sistemas lineales, integrando la teoria de redes y de
comunicacion; por esta razdn, la teoria de control no esta limi-
tada a un area especifica de la ingenieria, sino que es aplicable a
las ingenierias aeronautica, civil, quimica, mecénica y eléctrica,
por tanto, analiza la dindmica de todo tipo de sistemas e incre-
menta el control de los mismos.

Introduccion a los sistemas de control

La pregunta que nos hacemos comunmente al iniciar el estu-
dio de la teoria de control es la siguiente: ;Qué es un sistema de
control? Existen muchas definiciones, sin embargo, el concepto
que usaremos esta basado en los objetivos que se persiguen al
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tratar de controlar un sistema, para que opere bajo parametros
definidos previamente. Definimos un sistema de control como el
conjunto de elementos que funcionan de manera concatenada
para proporcionar una salida o respuesta deseada.

Los componentes basicos de un sistema de control pueden
ser descritos por:

a) Objetivos de control
b) Componentes del sistema de control
c) Resultados o salida

La relacion basica entre estos tres componentes se muestra
en la Figura n° 1 los objetivos de control pueden ser identifica-
dos como entradas o sefiales entrantes, los resultados son con-
siderados las salidas o las variables controladas; en general, el
objetivo del sistema de control es controlar la salida de manera
ordenada actuando los elementos de control sobre la sefial de
entrada.

Objetivos Sistema de Resultados
—_— >

control

Fig. 1. Componentes basicos de un sistema de control.
Ejemplos de sistemas de control

Sistema de control de velocidad

En el sistema de control de velocidad mostrado en la Figura
n° 2, desarrollado por James Watt, la cantidad de combustible
que admite la maquina se ajusta de acuerdo con la diferencia de
velocidad establecida como parametro de operacidn (Objetivo
de Control) y la velocidad real de la maquina. El funcionamiento
se describe asi: el regulador de velocidad se ajusta de manera
que al alcanzar la velocidad deseada, no fluya aceite a presiéon a
ningun lado del cilindro de potencia; si la velocidad real cae por
debajo de la velocidad deseada debido a una perturbacion, la
disminucidn de la fuerza centrifuga del regulador de velocidad
hace que la valvula de control se mueva hacia abajo, aportando
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mas combustible y la velocidad del motor aumenta hasta alcan-
zar el valor deseado, asi mismo, si la velocidad del motor au-
menta por encima del valor deseado, el incremento de la fuerza
centrifuga hace que la valvula de control se mueva hacia arriba,
esto disminuye la entrega de combustible y la velocidad del mo-
tor disminuye hasta alcanzar el valor deseado. En este sistema
la variable controlada (salida) es la velocidad del motor y el sis-
tema de control es la maquina, y la entrada es el combustible
(gasolina).
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Sistemas de control de temperatura

En la Figura n° 3 se muestra la arquitectura del sistema de
control de temperatura de un horno eléctrico. La temperatu-
ra se mide con un termémetro, el cual es un dispositivo ana-
l6gico, esta medicion se convierte en datos digitales mediante
un convertidor analdgico-digital (convertidor A/D), este dato
digital se introduce en el controlador a través de una interfaz,
se compara con la temperatura programada o deseada y si hay
una diferencia, el controlador (computador) envia una sefial al
calefactor a través de una interfaz, al amplificador y relé para
que la temperatura disminuya o aumente segtin sea el caso, a la
temperatura deseada. La salida del sistema es la temperatura,
el controlador es el computador y la entrada es la sefal del ter-
mometro.

Termdémetro
/

2 £
|4 Conversor
7 —=| Interfaz

A/D

Horno
eléctrico

MWW

Entrada

Relé |« Amplifica-

—— Interfaz
dor

programada

Calefactor

Fig. 3. Sistema de control de temperatura.

Sistema de control de nivel

Durante las horas de sol en el dia la celda solar produce elec-
tricidad haciendo que opere el motor, éste hace que la bomba
succione el agua desde el pozo para llevarla hasta el reservorio
ubicado en la montafia y durante las primeras horas de la ma-
flana, el agua es entregada por medio de un sistema de irriga-
cién a la comunidad (véase la Figura n° 4).

Conceptos basicos de sistemas de control

Planta: se designa como planta a cualquier objeto fisico que
ha de ser controlado (como horno, reactor quimico o un vehicu-
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Tanque

\ Y ontafia

Electricidad
generada

Valvula de
descarga

C 5 . \ Celda solar
mcong) Bembade [iorr]

Fig. 4. Sistema de seguimiento solar para el suministro de agua.

lo espacial). En forma mas general, la planta es la instalacion de
un sistema destinada a realizar un proceso determinado.

Proceso: es una operacién progresivamente continua, ca-
racterizada por una serie de cambios graduales con tendencia
a producir un resultado final de un objetivo determinado. En
adelante, se entendera por proceso cualquier operacién que se
vaya a controlar.

Sistema: es el conjunto de elementos interconectados y or-
ganizados en iteracion dinamica operando con un objetivo de-
terminado.

Entrada: se entiende como entrada o estimulo una sefial de
excitacion que se aplica a un sistema de control. Las hay de re-
ferencia y de perturbacion.

La referencia es aquella que se aplica a voluntad del usuario
con el fin de encontrar una respuesta deseada.

La perturbacién es una sefial de entrada no deseada y no
previsible que afecta adversamente el valor de la salida del sis-
tema, éstas pueden tener origen interno (generada por la mis-
ma planta) o externo.

Salida: se define como la respuesta de un sistema a un esti-
mulo dado (variable controlada).

Control: desde el punto de vista de ingenieria se define
como la regulacion en forma predeterminada de la energia su-
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ministrada al sistema, buscando un comportamiento deseado
del mismo.

Tipos de sistemas de control

Los tipos de sistemas de control mas comunes son los sis-
temas de control a lazo abierto y los sistemas de control a lazo
cerrado.

Sistema de control a lazo abierto: es aquel sistema de con-
trol en el que la salida no es afectada por la sefial de entrada. La
salida no se realimenta para compararla con la entrada.

Los elementos de un sistema a lazo abierto usualmente es-
tan divididos en dos partes, el controlador y el proceso contro-
lado, véase la Figura n° 5.

Entrada de Entrada de Variable
referencia entrada controlada

Proceso )
—_—
Controlador Controlador

Fig. 5. Elementos de sistema de control a lazo abierto.

Un ejemplo practico es una lavadora automatica; el remojo,
el centrifugado y el lavado operan con una base de tiempo. La
maquina no mide la sefial de salida, la limpieza de la ropa. Otro
ejemplo es el sistema de control de trafico vehicular, éste esta
basado para operar sobre un tiempo fijado, pero no mide su
respuesta que es el trafico; sin embargo, los sistemas de control
de trafico modernos, computarizados, pueden considerarse de
lazo cerrado: se ajustan de acuerdo al flujo de trafico.

Sistema de control a lazo cerrado (control realimenta-
do): en el sistema de control a lazo cerrado, el controlador se
alimenta de la sefal de error de desempefio, la cual representa
la diferencia entre la sefial de entrada y la sefial de realimenta-
cion con el fin de reducir el error y llevar la salida del sistema
a un valor deseado. El término lazo cerrado siempre indica una
accion de control realimentado para reducir el error del siste-
ma. Véase la Figura n° 6.

Una de las ventajas importantes que presenta este tipo de
sistema de control es que se hace insensible a las perturbacio-
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Entrada de Entrada de Variable
referencia R entrada R Proceso controladzi
7y »| Controlador > Controlador >
- Elemento de | y
Medicion

Fig. 6. Sistema de control a lazo cerrado.

nes y mantiene su exactitud; de la comparacion de la sefial rea-
limentada y la sefial de entrada resulta la sefal de error, la que
es minimizada con la accién de control. Sus principios son apli-
cables a sistemas que presentan perturbaciones o variaciones
imprevisibles en los componentes del sistema.

Servomecanismo: es un sistema de control mecanico rea-
limentado (lazo cerrado) que involucra partes en movimiento
accionadas por un motor y cuya funcién es controlar posicidn,
velocidad o aceleracién mecanica.

Analisis de la realimentacion

La realimentacién simple. En un sistema realimentado, se
caracteriza por el hecho de que la variable controlada sea tem-
peratura, la velocidad o presion, entre otras variables, son me-
didas por un sensor y esta informacion medida es regresada al
controlador que influye sobre la variable controlada. El princi-
pio es facilmente ilustrado en un sistema de calefaccién case-
ro que no son muy comunes en el trépico, controlado por un
termostato. Los componentes de este sistema y sus conexiones
son ilustrados en la Figuran® 7.1, la cual identifica la mayor par-
te del sistema y muestra la direccion del flujo de informacion de
un componente a otro.

Se realiza muy facilmente un andlisis cualitativo de la opera-
cion de este sistema. Supdngase que la temperatura de la casa
donde esta ubicado el termostato y la temperatura exterior esta
muy por debajo de la temperatura deseada, cuando se aplica la
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Pérdida

de calor Temperatura

Valvula del cuarto
Horno Casa >
de Gas

—»| Termostato

A

A

<
<

Fig. 7. Sistema de control de temperatura de horno casero.

energia, el termostato estara en activo, transmitiendo energia a
la valvula gas del horno o caldera que se abrira, haciendo que
se enciendan y que funcione el ventilador para que entre calor
a la casa. Si el calentador (horno o caldera) esta bien disefiado,
la cantidad de calor en la entrada sera mucho mayor que las
perdidas de calor y la temperatura del cuarto aumentara hasta
exceder el punto de operacién del termostato en una pequefia
cantidad. En este momento se apagara la fuente de calor y la
temperatura del cuarto tendera a tomar el valor externo. Cuan-
do ésta baja un grado o mas por debajo del punto de operaciéon
del termostato, éste se activa de nuevo y el ciclo se repite man-
teniendo el cuarto dentro de un rango de temperatura deseada.

A partir de este ejemplo se pueden identificar los compo-
nentes genéricos de un sistema de control realimentado ele-
mental, el cual se ilustra en la Figura n® 7.1.

Perturbacién

Planta

Referencia | ; ~ Salida
o— Filrode| Contro "
entrada lador

Y

Sensor [«

!

Sensor de ruido

Fig. 7.1. Diagrama de bloque de un sistema de control realimentado simple.



Ali José Carrillo Paz 27

El componente central es el proceso o planta, cuya variable
sera controlada. En nuestro ejemplo ilustrativo, la planta es el
cuarto. La sefial de salida es la temperatura en el cuarto y la
sefial de perturbacion es el flujo de calor del cuarto debido a
la conduccién a través de las paredes a la temperatura exterior
mas baja (El flujo de calor depende del viento y las puertas
abiertas, etc.). El actuador es el dispositivo que puede influir en
el proceso, en nuestro caso es la caldera a gas.

En realidad, el horno o caldera tiene una luz piloto, la cual
implica usualmente retroalimentacion, una valvula de gas, que
también implica retroalimentacién y un ventilador que con va-
rios controles para el ciclo de operacién de encendido y apagado
sin realimentacion basado en el hecho de la operacién eficiente
del sistema. Estos detalles se mencionan para ilustrar que mu-
chos sistemas realimentados contienen componentes que for-
man ellos mismos otros sistemas realimentados. El componen-
te que designamos termostato en la Figura n° 7 se ha dividido
en tres partes en la Figura n® 7.1, son la referencia, sensores de
salida y comparador (simbolo de adicién). Para propédsitos de
control, hay que medir la variable de salida (temperatura del
cuarto), medir la variable de referencia (temperatura deseada)
y compararlas.

El valor de la realimentacion puede ser demostrada facil-
mente por un analisis cuantitativo de un modelo simplificado
de un sistema, el control de la velocidad crucero de un auto-
movil mostrado en la Figura n® 7.3. El estudio de esta situacion
analiticamente necesita un modelo matematico de nuestro sis-
tema en forma de un conjunto de relaciones cuantitativas tam-
bién de variables.

En este ejemplo ignoramos la respuesta dindmica del auto-
movil y solo consideramos el comportamiento. Ademas, asu-
mimos el rango de velocidad que serd usado por el sistema,
podemos considerarlo una relaciéon lineal, luego de medir la
velocidad del vehiculo en un camino nivelado a 65 km/h, en-
contramos que el cambio de un grado en el angulo de apertura
(nuestra variable de control) causa un cambio de 10 km/h en la
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velocidad. Las observaciones realizadas mientras manejaba en
la subida y bajada de una montafia, éstas arrojaron que cuando
el grado de inclinacién cambia en 1%, medimos un cambio de
velocidad de 5 km/h. El medidor de velocidad operdé con una
exactitud de una fraccién 1 km/h el cual era considerado muy
exacto.

Controlador
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2
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~
=
'S

Velocidad
deseada

Para concluir, quiero aclarar que algunos autores utilizan la
palabra retroalimentado y algunos otros la palabra realimenta-
do, como esta palabra viene de la traduccidén en inglés feedback,
en ambos casos significan lo mismo.
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CAPITULO 2

FUNDAMENTOS MATEMATICOS
La Transformada de Laplace

Introduccion

Uno de los aspectos mas importantes del andlisis y disefio
de los sistemas de control es su modelado, para ello es necesa-
rio el uso de los fundamentos matematicos para el desarrollo
de herramientas que faciliten el analisis y la solucién de pro-
blemas en la teoria clasica de sistemas de control, la razén de
esta afirmacién estriba en el hecho de que el comportamiento
de los sistemas fisicos se describen mediante ecuaciones dife-
renciales ordinarias, lo que conlleva al estudio detallado y pro-
fundo de las mismas para lograr un basamento matematico que
garantice un nivel académico adecuado en los tépicos: teoria
de variable compleja, la diferencial, ecuaciones diferenciales, la
transformada de Laplace y la transformada z. Asi mismo, en la
actualidad la teoria de control moderno requiere considerable-
mente de un nivel matematico mas intensivo, tales como la teo-
ria de matrices, teoria de conjuntos, algebra lineal, transforma-
ciones lineales, programacion, teoria de probabilidades y otros
topicos de matematica avanzada.

En este capitulo se presenta la teoria y aplicaciones de la
transformada de la Laplace y recomendamos la revision de los
topicos sobre variables complejas, ecuaciones diferenciales y el
algebra matricial. Estas asignaturas normalmente forman parte
del ciclo basico de ingenieria con énfasis en las aplicaciones a
los sistemas por lo que abordar estos temas en este texto haria
muy extensa la obra sobre contenidos ya incluidos en el disefio
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curricular de los estudios de ingenieria.
Los objetivos de este capitulo son:

1. Introducir los fundamentos de la transformada de Laplace.

2. Desarrollar aplicaciones de la transformada de Laplace
para resolver ecuaciones diferenciales ordinarias.

3. Introducir el concepto de funcién de transferencia.

4. Usar la herramienta Matlab para la solucién de problemas.

La Transformada de Laplace

La transformada de la Laplace es una de las herramientas
matematicas mas usadas para resolver ecuaciones diferencia-
les. En comparacion con los métodos clasicos de solucién de
ecuaciones diferenciales, el método de Laplace se basa en:

1. Las soluciones, tanto homogénea como particular de las
ecuaciones diferenciales, se obtienen en una sola operacion
matematica.

2. Latransformadade Laplace conviertela ecuacién diferencial
en ecuaciones algebraicas con el operador s, por lo que es
posible manipular las mismas mediante las reglas basicas
del algebra para obtener la solucién en el dominio de s. La
solucion final se obtiene tomando la transformada inversa
de Laplace.

Definicion de la transformada de Laplace

Sea f(¢t) una funcién continua en [0,00). La transformada de
Laplace de f(t) es la funcién /(s) definida mediante la integral:

1(s) = T’ A)ed ©

El dominio de F(s) estd formado por todos los valores de s
para los cuales la integral en (1) existe, la transformada de la
Laplace se denota £ {/(t)} of(s). Donde la variable s = a + jw se
define en el plano complejo.

Ejemplo 1
Seala funciénf(t) definida por:
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1¢t=0
u(e)= 0 para otro valor

u(t)

t

Fig. 8. Grafica de la funcion escalon unitario.

Usando la definicion de la transformada de Laplace para cal-
cular:

[oe]

f5)= | (1)evde= s =0-Tt=d @)

s>0
Para valores de s < 0, la integral diverge y por tanto el domi-
nio de F(s) es paras > 0.
EJEMPLO 2

Determine la transformada de Laplace de f(t) = e* ¢ = 0,
donde a > 0 es una constante.

f(s) = :fo (e)etdt = j‘o e gt (3)

(o)
I
s-a 0 S—a

)y §>4a

De este resultado podemos obtener las trasformadas de las
siguientes funciones:

a) f(t) =", b) f(t) = et
La transformada de la funcién ¢ usando el resultado en (3)
obtenemos:

F (s) =

1
s—ja

y para la funcién e7* usando el mismo
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resultado, obtenemos:

1
F(s) = sijo baras> lja| se obtienen los pares de

transformadas siguientes:

e o m (4)
et - (5)
s+ja
Sif(t) & F(s), operador matematico doble implicacién
<, significa que va en dos sentidos, el primero indica que:
L{f(t)} = F(s), de igual manera el segundo indica
L1 {F(s)} :f(t), siendo
L1 {F(s)} la transformada inversa de Laplace de F(s).

Propiedades de la transformada de Laplace
a) Propiedad de linealidad

Teorema 1

Dada dos funciones f(t), g(t), se requiere determinar la
transformada de la suma de estas funciones, la propiedad de li-
nealidad de la transformada define a la trasformada de la suma
de funciones como la suma de sus transformadas, ilustrada de
la forma siguiente:

£{af(9) + bo(0)} = L{af(D)} + £ (b (0)} (6)
= bF(s) + bG(s)
EJEMPLO 3

Determine la transformada de la funci(')nf(t) = sen(at) para
t = 0, donde a es una constante arbitraria.

Podemos comenzar estableciendo la relacion de la funcién
seno con las funciones exponenciales, usando la identidad de
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et — gt
Euler tenemos que sen(bt) = 2—] Este resultado facilita el
calculo de la trasformada de la funcién seno, debido que la tras-
formada de las funciones exponenciales ya son conocidas usan-
do (4) y (5), por lo cual es muy facil hallar £ {sen(at)} mediante
la aplicacién de la propiedad de linealidad de la transformada

equivale a obtener:

jat_e—jat
g ey
{ 2] }

f0)= 3 (=) o F(s) - 21}_( 11 )

s-bj s+bj
_ 1 (s+bj-s+bj\__ 2bj _ b
T2 s?+ b? _2(52+b2)_52+b2

y podemos concluir que:

b
s?+ b?
De manera analoga se puede determinar la transformada de

la funcién/(t) = cos(b), la cual se dejara como ejercicio al lector,
donde obtendra el siguiente resultado:

sen(bt) o (7)

cos(bt) o (8)

s
s*+b?

Una funcién f(t) es de orden exponencial «a si existen cons-
tantes positivas Ty M tales que:

IA(t)| < Me® (9)

Teorema 2

Slf(t) es continua por partes en [0,00) y de orden exponen-
cial a, entonces L {/(t)} = F(s) existe para s > a.

Demostracion:
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Separamos primero la integral [;’ f(t)e‘“dt en dos partes.
T )
[ flO)etde+ [ ft)edt (10)
0 0
y como t = T para s > a entonces se puede aplicar la relacidn:

If(t)e—st| — e—st|f(t)| < Me—(s—at)t’

y se obtiene:

| MeGdtdt=M [ e 9tdt=Me (-t
T T

<0
S—a

Como |f(t)e| < Me"9tpara t > T, la integral impropia de la
funciéon mayor converge para s > a; el criterio de comparacién
muestra que la integral

j’o ft)ede

converge para s > . Por ultimo, como las dos integrales en (9)
existen, la transformada de Laplace L{f{(t)} = F(s) existe para s
> a.

b) Propiedad de traslacion en s

Teorema 3

Si la transformada de Laplace E{f(t)} = F(s) existe para s >a
entonces:

E{e”ff(t)} = ;9 e“‘f(t)e““dt =f(s —a) paras>a

Demostracion:
De la definicién se sabe que:

cler (O} =] erf(D)etdt=[ F()et-rdt=F(s-a)
0 0
la cual es valida para s > a.

EjJEMPLO 4
Determinar la transformada de Laplace def(t) e sen(bt).

En el Ejemplo 3 vimos que E{sen(bt)} = asi que por

st +b¥



Ali José Carrillo Paz 37

la propiedad de traslacion de F(s), tenemos que:
b
L{e“sen(bt)} = m (11)

c¢) Transformada de Laplace de la derivada

Teorema 4

Sea f(t) una funcién continua diferenciable en el intervalo
[0, 00); entonces la transformada de Laplace de la funcion deri-
vada def(t) viene dada por:

L{f(6)} = sF(s) - A(0) (12)

Podemos usar induccion para extender el teorema a deriva-
das de orden superior:

Lif (0} = s°F(s) - s(0) - £(0) (13)

y en general obtenemos el resultado:

L{f ()} =sF(s) = s f(0) =572 £(0)
=53 f"(0) == f"(0) (14)

Esta propiedad es muy ttil para encontrar la solucién de las
ecuaciones diferenciales ordinarias, lo cual abordaremos mas
adelante cuando estudiemos las aplicaciones de la transforma-
da de Laplace, por ahora la usaremos para encontrar las trans-
formadas de funciones conocidas.

EJEMPLO 5
Sea la funcién f(t) = sen (bt). Si f'(t) = beos (bt) y f{0) = 0,
halle la transformada de la funcién f{t) = cos bt.

Sustituyendo en la ecuacion (12) obtenemos:
E{b cos bt} = SF(S)— 0
Por tanto,

b
s* + b?

E{b cos bt} =s
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y en consecuencia

E{cos bt} =

s?+ bZ
d) Propiedad de multiplicacion por t”

Teorema 5

Sea una funcion f(t) seccionalmente continua y diferencia-
ble en el intervalo [O 00) entonces su trasformada de Laplace
es también diferenciable y por lo tanto,

clerf(0) = (-1 20 (15)

La demostraciéon de este teorema es muy sencilla, bastara
con derivar la funcién F(s) usando la definicién de la transfor-
mada de Laplace e intercambiando el orden de integracion y
derivacién.

EJEMPLO 6
1t=0

Seaf(t) = t,u(t) donde ,u(t) = 0 0
t<

La transformada de esta funcién la calculamos en el Ejemplo
1,yes:

1

M(t) - ?J
ahora bien, para calcular la transformada de la funci()nf(t), de-
bemos aplicar la propiedad de multiplicacién por t, esto implica

que:
s 1

F(S) = ds = ?,

y de acuerdo con este resultado podemos concluir que la trans-
formada de:

f(t):tparatZOesf(s):_
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EJEMPLO 7

Podemos calcular las transformadas de f(t) =ty x(t) =t
para t > 0, usando la propiedad de multiplicacion por ¢, y en-

contramos que:
(L (L
S/ 2 5/ _ 6

R = (1 —L =2y x(9)- (1 Lo 8

ds? ds® st

Si ahora hacemos f(t) = t"parat = 0, se obtiene, por lo cual

concluimos que:
a| L
s n!

t"<—>(—1)n — = a6

e) Propiedad de desplazamiento en el tiempo

Teorema 6

Sea f(t)una funcién seccionalmente continua y existe su
transformada. Entonces la transformada de f(t - T) parat=Tt
esta dada por:

L{f(e-7))=F(s)e™ a7)
Demostracion:

Por definicion.

Cif(e- 1) =1 flt-1)edt
0
Sihacemosu=t-1,t =u+ 1, entonces,
Cif(t- 1)} =] Au)e@rde=] fu)eerdu
0 0
=e" T j(u)e‘s“du =eT f(s)
0
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EJEMPLO 8

Determinar la transformada de la funcién x(t)= sen(t - 5)
parat=5.

Como conocemos la transformada de sen ¢, es , aplica-

sf+1
mos la propiedad de desplazamiento y obtenemos:

1 e
s$?+1

-5s

ﬁ{sen(t - 5)=

f) Transformada de la integral

Teorema 7

Sea f(t) una funcion seccionalmente continta en el intervalo
[0,00), y cuya transformada es F(s). Entonces,

L jf(t)dt =@ +_f fAt)dt, (18)

pero la funcidn es cero si t < 0 y se tiene que:

L (_ff(t)dt :@ (19)

Demostracion:

dg _
Sea 22 = f(t).
ea ” /(t)

Entonces,

L {%} = L{f(t)} y en consecuencia:

E{f(t)} = SG(S) - g(O), do?de
G(s)=L{g(®)} v g(t)= _5[; A)dt, con
o(0)= § oy



Ali José Carrillo Paz 41

Sustituyendo nos queda:

LIAD) =5 ﬁ{i /(t)dt} - | Aoy

Despejando se obtiene:

z{ofo f(t)dt} SO Yo

EJEMPLO 9
Determine la transformada de la funcién:

t
f(t): [ e sen(St)dt.
0
Buscamos primero la transformada del argumento:

-2t 5
e sen(St), m

y aplicamos la propiedad de la integral, para determinar la
transformada def(t), se obtiene:

5
0 -rie) - LB

g) Propiedad de escalamiento en el tiempo

Teorema 8

Una funcién esta escalada en el tiempo y estad definida por
f(at) de tal manera que su transformada.

LY | fad)erwar

viene dada por:

i) (2)
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Demostracion:
Sabemos que:

0
J f(at)e‘“dt
Haciendo un cambio de variables.
u du
u=at, t=—, du=adt=>—=dt
a a

y sustituyendo en la integral obtenemos:

LT fu)e " d ——F( )

EjEMPLO 10
Determine la transformada de la funcion x(at) = (at)z.
Como conocemos la transformada de la funcién

2
j(t) =te pet aplicamos la propiedad del Ejemplo 7 y

obtenemos:

Li(a)= - = 5=
[

h) Teorema del valor inicial

Teorema 9

Seaf(t) una funcidn seccionalmente continta en el intervalo
[0,00) y cuya transformada F(t) existe. Entonces podemos co-
nocer su condicion inicial en ¢t = 0 mediante la propiedad:

lim f(¢) = lim sf(s) = f(0) (20)
t—0 § =00

Demostracion:

Sabemos que:
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{10 - Lo

porlo que,

lim | 9 st gt = lim [s#(s) - f(0)],

s> 0 gt

pero

f0)=1lim ft) 'y lim j f estdt=0

t-0 s—00 0

y nos queda:

lim f(e) = lim sF(s)=(0)

t—=0

EjEmpPLO 11

Suponga que la funcion x(t) tiene la transformada:

_ 2
X(s) _ 352+ 2
s3+5%2+3s5+2
Determine X(O)

Aplicando el teorema de valor final nos queda:

i -3s%+2s _i__
X(O)_shj?osx(s) hr?o S+s2+3s+2 1 3

i) Teorema del valor final

Teorema 10

43

Sea unaf(t) funciéon seccionalmente continta en el intervalo
[0,00) con transformada F(s). Entonces podemos conocerf(oo)

por la relacion:
f(e0) = lim sF(s)
s =0

Demostracion:

(21)
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Sabemos que:

., rd ,
lim | d_{ e-tdt = ?33 [sF(s) - f(0)]

s—0 0

y también que:
[ Gt de= tim[s#(5) - (0)] = tim 1) - 0)]
- lim[s7() -/(0)]
por lo que:

lim f(t) = lim sF(s) = f{c0)
t—o00 s -0

EJEMPLO 12

Determinar el valor final e inicial de la funcién x(t) =4e5t -
3e™?,

4 3 s=7
X(S)=5+5 S s+2 =sz+7s+14
x(0)=11'm & =1

s—o 2+ 7s+ 14
x(oo):lim&—o

s-0 2+ 7s+14
Ejemplo 13

Suponga que X(s) es una funcion racional dada. Halle x(oo).

X(s)— 25> -3s+4 B 2s*-3s+4
s3+3s%+ 2s s(s+1)(s+2)

lim x(t) =lim swz i
t—>00 s -0 S(S+ 1)(S+2) 2
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x(0) = lim s(2s*-3s+4) _
522 s(s+1)(s+2)

Resumen de Transformadas

A1) L)} = F(s)
1, t20 % §>0
at 1
¢ s-a
n!

t =y
sen(bt) ﬁ
cos(bt) ﬁ

n!
eattn W
b
e‘”sen(bt) m
s-a
e“cos(bt) m
f (t - T) e~ F(s)
F(s)
If (t)dt 5
1
j(at) - F(s/a)
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Transformada inversa de Laplace

En la seccion anterior definimos a la transformada de Lapla-
ce como un operador integral que asocia a cada funci()nf(t)con
una funcion F(S). En esta seccién pretendemos encontrar /(t),
cuando conocemos la transformada F(s), es decir, queremos
hallar la transformada inversa de Laplace.

Definicion de transformada inversa de Laplace

Sea una funcién F(s). Si existe una funcién f(t) que sea sec-
cionalmente continua en el intervalo [0, 00) y satisfaga la rela-
cion:

IREOING (2)

entoncesf(t)es la transformada inversa de Laplace de F(s).

EJEMPLO 14

Determinar la transformada inversa de Laplace £[F(s)],
donde:

6
i) F(s) = m
6
i) F(S) ) (s 2)2 + 36
-1
i) F(S) e st +5

Para calcular la transformada inversa de Laplace £[F(s)],
usaremos la tabla de transformadas y las propiedades de la
transformada estudiadas en la seccion anterior.

yo[e]- o2

54—

= £'1 = t3

S4-

as 6
ii) £ (5—2)—2+36 = e?* sen(6t)
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s-1

iii) L1 (5'1—2"'4] =¢ cos(Zt)

En la practica no siempre es facil encontrar una transforma-
da inversa que aparezca en la tabla de transformadas de Lapla-
ce; para funciones mas complejas usaremos las propiedades
de £* asi como también las propiedades de la transformada de
Laplace (£). Una de las herramientas mas utiles es la propie-
dad de la linealidad, la misma es heredada de la linealidad de la
transformada de Laplace y se enuncia a continuacién.

Teorema 11

Sean L£'[F,(s)] y £ [F,(s)] funciones que existen y son con-
tinuas en el intervalo [0,00), entonces:

CHF(s) +Fi(9)] = £ [F()] + £ [F,(5) (23)
EJEMPLO 15

Determinar la transformada inversa de Laplace de:

4 2s 10 }

+ +
s-3 §°+4 352+6s5+9

F(s)=L" {
Primero aplicamos la propiedad de linealidad:

s 10 1
4+ — E-l -
52+4] 3 s?+2s+ 3

1
}+ 2L7
3

S -

ﬂt)=4£'1{

De la tabla de transformadas de Laplace obtenemos que:

1 s
45'1{ 3}=4e3i y 25'1[ . 4] =2cos 2t
s- s+

Ahora bien, para calcular:
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)

es necesario hacer algunas manipulaciones para llevarla a una
expresion que aparezca en la tabla, para ello completamos cua-
drados en el denominador para obtener s?+2s + 3 = (s + 1) +2
y luego sustituyendo en la transformada nos queda:

10 ) V2 ]
v El -
(3\/2> (s+1)2+2

Si la ubicamos en la tabla de transformadas, de donde obte-

et sen(\/Zt).

1 ]
s?+2s+3

- 10
nemos el siguiente resultado

342
Por lo tanto, la solucién total es:

j(t) =4e3% + 2cos (Zt) + 10 etsen (\/Zt)
3v2

Ahora bien, si usted tuviese la oportunidad de hallar la trans-
formada inversa de Laplace de la funcion:

55s+3

s3+7s*+14s+ 8

F (s) =

o de:
1

s+1

Fs)=-% 1 17 1
3 s+2 6 s+4

que es igual a la anterior, por supuesto, es mucho mas facil en-
contrar la solucién de la segunda funcién, pues esta expresion
esta en una forma que permite usar el método de fracciones
parciales. Estudiaremos este método a continuacion.

7
+ —
2

Método de fracciones parciales

Este método consiste en expresar una funcién F(s) de la for-
ma P(s)/Q(s) (funcién racional), donde P(s) y Q(s) son polino-
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mios en s, y donde el grado de P(s) es menor que el grado de
Q(s), por lo cual tienen un desarrollo en fracciones parciales
cuya forma esta compuesta por factores lineales y cuadraticos
de Q(s). Debemos considerar tres casos:

1. Raices reales diferentes.
2. Raices reales repetidas.

3. Raices complejas o factores cuadraticos.

1. Raices reales diferentes

Si podemos expresar Q(s) en factores lineales distintos (fac-
torizacion de polinomios) de la forma:

Qs)=(s-r) (s-r)(s-r)

donde los valoresr,i=1, 2, ..., n son numeros reales, podemos
representar la funcién en fracciones parciales como:
P(s A A A
F(s) = ()= L —2 4+
Q(s) s-r, s-r, s-r

n

donde las constantes A,i=1,2,..,nson numeros reales.

EJEMPLO 16

Determinar la transformada inversa de Laplace £[F (s)], si

S5s+3
F(S): 3 2
s3+7s*+14s+ 8

la cual podemos expresar de la siguiente manera:
55+ 3 A B C
F(s) = = + +
$*+7s*+14s+8 s+1 s+2 s+4

Hay muchas formas para encontrar estas constantes, para
nuestro caso las determinaremos considerando a 4, B, C cons-
tantes o residuos de F(s) y se calculan multiplicando ambos la-
dos de la ecuacion por (s - sn) siendo s laraiz de s que le corres-
ponde a cada constante y se le asigna el valor de s a s, es decir,
(s + 1) F (s)|s= ,= 4, como se muestra a continuacion:
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A= 5s+3 _ﬁ
S (s+2)(s+4) = 3

g 553 | 77
_(s+1)(s+4) s:—Z_—z_

Cc= 55+ 3 C——E
_(s+1)(s+2) o= -4 "6

Por lo tanto,

55+ 3

$3+7s*+ 145+ 8

F(s) =

2 1 7 1 17 1
F(S)z__. B —
3 s+1 2 s+2 6 s+4

Por ultimo, la transformada inversa de Laplace £ [F,(s)] es:

2 7 17
flH)=-—et+—e*-—"* parat>0
3 2 6

2. Raices reales repetidas

Sea (s - r,) un factor lineal repetido de Q(s) y supongamos
que (s - rl)’" es la maxima potencia de Q(s). Entonces la parte
del desarrollo en fracciones parciales de:

@ corresponde al término (s - rl)'", es:
Q(s)
A A A

2

o) Gor) G
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donde los A son numeros reales.

EjJEMPLO 17

Determinar la transformada inversa de Laplace £*! [Fl(s)],
si,

Esta la podemos expresar en la forma:

$?+9s+2 A B C

O 69 G- 6-1 549

Para encontrar las constantes usamos el mismo método an-
terior, pero con una variante que explicaremos en el desarrollo
del ejemplo.

Para encontrar A se procede de manera analoga al ejercicio
anterior:

12

_52+9s+2 _
s=1_ 4- -

- (s+3)

Para el caso de la constante debemos de aplicar la formula
siguiente:
1 dA(s)
Alk =
(k-1)!  ds*

(24)

s=rl

Si aplicamos esta relacion para encontrar B, tenemos que:

(52+9S+2>
d—
1 s+3

ECEEY! ds
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_ (25 + 9)(5 + 3)—[52 +9s5+ 2]

(5+3)
=44—12=£=2
16 16
y
S8+ 95+2 _ 16 _
(s-1)* |., 16

Obtenemos entonces el resultado para la transformada in-
versa como:

f(t) = 3tet + 2et — e

3. Factores cuadraticos con raices complejas

Para este caso podemos expresar a Q(s) en factores cuadrati-
cos o en factores con raices complejas de la forma:

Q(s) = (s—a+bj) (s-a-bj) o Qs)=[(s-a)*+p7]
Hay dos formas de encontrar la solucién en este caso; prime-
ro resolveremos usando las raices complejas y luego usaremos

el método por factores cuadraticos y el lector escogera el que
mas le agrade.

Para resolver por el método de las raices complejas, se pro-
cede de la siguiente manera: Si s, = p, = 0 + wj, donde p, = p, es
el complejo conjugado de p,.

Entonces,
C C
F(s)= —s + —-
(S B p1) (S - pl)
y la solucién buscada sera f{t) = C‘l[F(s)], es decir,
f(e)=Cerit+ e

la cual se puede expresar también como:
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f(t) = 2|Cl|e“” cos(wt+LCl) (25)
donde

Cl = (S - pl)f(s)

Por el contrario, si queremos resolver por el método de fac-
tores cuadraticos, se procede de la siguiente forma:

S—pl

Se factoriza Q(s) usando completacion de cuadrados de la
forma (S - 0()2 + 3.
Luego se construye la fraccién parcial de la forma,
A(s-a) . B(p)
s—a)+p  (s-a)+p?

donde los valores de A y B se determinan por el dlgebra basica.

(26)

La trasformada inversa es:

£(t) = Ae cos(Bt) + Be sen(pt)

EJEMPLO 18

Determine la transformada inversa de Laplace de la funcion.
s¢-2s+1
F(s) =

s2+ 352 +4s+ 2
Primero procederemos por el método de raices complejas:

s?-2s+1
F(S)= (s+1—j)(s+1+_j)(s+1)
A A B

TGr1-) 1+ (s+1)

Para encontrar el valor de A hacemos el procedimiento antes
explicado en el método de expansion en fracciones parciales.

p §sf-2s5+1 -3 iy
= = — 4+
Gr1+)G+ D], 2 7
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5 4
lAl:E y 2A =180+ tan™? <—§):126.87°

s$?-2s+1

s "
(s*+2s+2)

s=-1

La solucion completa es:
f(t) =5¢e* cos(t + 126.87°) +4etparat=0

Usando el procedimiento de factores cuadraticos resolve-
mos factorizando Q(s) para obtener Q(s) = [(s + 1)2 + 1](5 + 1)
y entonces,

F (S)=

As+1) B C
(s+1)2+1 (5+1)2+1 (s+1)

Resolviendo por algebra basica nos queda:

(s2-2s+1)=A(s+1)?+B(s+1) +C (s> + 25 +2)

$?-2s+1
C=r——r| =4

(s*+2s+2) |,
-3=4A

~10=6+B=B=-4

y a transformada inversa de F(s) es:
f(t) =-3e'cost-4et'sent+4et= 5e‘fcos(t + 126.87°)

Aplicaciones de la Transformada de Laplace a las
ecuaciones diferenciales
EJEMPLO 19

Resuelva la siguiente ecuacion diferencial con los valores
iniciales dados.
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y'+2y'+2y=t  y(0)=1y(0)=1
Primer paso: se aplica la transformada a ambos lados de la
ecuacion diferencial.

#¥(s) - 9/(0) - (0) + 2[s¥(5) - ¥(0)] + 2(5) =

1
Y(s)[sz+25+2]=s+3+§

s?+3s+1
52(52 + 25+ 2)

Y(s) =

Segundo paso: se busca Y(s) usando el método de fraccio-
nes parciales; esto se deja como ejercicio al lector. Se obtiene:

~ 3 (s+1) 1
Y(S)_?(s+1)2+1+2 (s+1)2+1

1(1 1/(1
_—— + — —
2\'s 2\ &
Tercer paso: se determina la transformada inversa de Y(s)

para obtener y(t).

(t) S t+2e*sent ! 1t
=—e cost+cze sent——+—
) 2 2

Convolucién de funciones

Teorema 12

Sea dos funciones f(t) y g(t) seccionalmente continuas en
[0,00). La convolucién de las funciones f(t) y g(t)se denota
como:

A6y 9(0) = | Aw) gt~ u)du 27)

Propiedades
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a A9 9(9)=9(6) )

b f(1)* [9(1) + h(O)] = A(&)* 9(¢) + f(£)* h(¢)
c. [0)* g(O)] *n(e) = f(0)* [a(5)* n(0)]

d f(t)0=0

EjEMPLO 20

Sean f(t) = ty g(t) = t* funciones continuas en el intervalo [0,
00). Determine la convoluciénf(t)*g(t).

A6y 9(0) = fu(t-wpdu= fu(e - 2ut + )

t

t t2u? 2 u*
= | (ut? - 20t + u¥)du = | — - —udt+—
0 2 3 4 /o
tr 2 tt 3 2 1
=———tt+—=| ——= )= —t*
2 3 4 4 3 12
EjJEMPLO 21
Hallar £ !
allar .
1y
Tenemos que:
1 1 1
(52+1)2 (52+1) (sz+1)
por lo que

1 1
C'l’ (s2+ 1) (52+ 1) ] =sent*sent

E|)€sen(u) sen(t - u)du

sent-tcost
2
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Se deja la comprobacién del resultado al lector usando la
trasformada inversa y propiedades de la transformada de La-
place.

Transformada de la funcién delta de Dirac

Un concepto importante en la teoria de sistemas es la fun-
cion impulso o también llamada delta de Dirac, se representa
como 6(t) definida asf:

5(6)
1

| t

Fig. 9. Grafica de la funcion Delta de Dirac.

1 -e<t<e -0
8(t) =
0 t>¢g t<-¢

La funcién impulso o delta es muy importante en la ciencia e
ingenieria, el comportamiento de un sistema puede describirse
si lo perturbamos de manera abrupta cuando esta en reposo,
esta perturbacion significa inyectarle una cantidad finita de
energia en un lapso de tiempo muy corto, un ejemplo practico
es, cuando la raqueta de un tenista golpea la pelota.

Existen varias maneras de representar el impulso, la repre-
sentaciéon con mas analogia fisica de la cual se deriva, es la que
se muestra en la Figura n® 9.

Ahora bien, la transformada de Laplace de la funcién impul-
so o delta de Dirac es:

£[5(6)] = [ (t)e=de =1

Demostracion:
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5,(t)
y

A

1
8"

»
>

1 .11
Sn 82 £1

Fig. 10. Aproximacion de la funcién impulso.

c[6(0)] = [ 8(c)e=de=1im [ " de= tim ~L e
=3 s Ay
_lim 1-¢*
e-® g5

El calculo del limite indeterminado % se puede resolver apli-

cando la regla de L'Hopital derivando el numerador y el deno-
minador con respecto a ¢.

Nos queda:
d(1-e*
lim 1-e® lim de lim se™
£50 g5 €50 d(es) = fow 5 -1
de

De esta prueba se deduce:

Llo(t-t,)]=e* (29)

Esta conclusion se demuestra usando la propiedad de des-
plazamiento en el tiempo de la transformada de Laplace, expli-
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cada con anterioridad.

Desarrollo de fracciones parciales usando Matlab

Para ello utilizaremos el comando RESIDUE(n, m), si tene-
mos una funcién racional Y(s) donde se puede aplicar algin
caso del método de fracciones parciales, el desarrollo de

() = %,

donde el grado del polinomio Q(s) es mayor o igual que el grado
del polinomio:
P(s)yY(s)le) +ﬂ+ .......... MH’(
s-p, S-p, s-p,
donde las r son las constantes,

¥(s) = (s - p)(s - p,)(s = ;)5 = p,),
y k representa el residuo de la division de polinomios.

EJEMPLO 22
Sea
s?+2s+3 A B C
Y(s) = = .
(S) (s + 1)3 (s + 1) * (s+ 1)2 ¥ (s + 1)3
Podemos expresar
Y(s) de la forma:

s?+2s+3
Y(S): 3 2
s$+3s2+3s+1

>>num:[0 12 3];

>>dem=[13 3 1];

>>[1p,k]=residue(num,den)
Corrida

1.000
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0.000
2.000

-1.000
-1.000
-1.000
k=
0.000
Este resultado representa la transformada:

1 0 2
V(s) = (s+1) * (s+1)? * (s+1)3

Adicionamos el comando printsys(m, n, ’s’) para escribir la
ecuacion:

>> printsys(num,den,’s’)

El resultado de la corrida es:
s"2+2s+3

s"3+3s"2+3s+1

Num/dem =
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PROBLEMAS

1. Determine la transformada de Laplace de las funciones
siguientes:

1.1 f(t) = 4c05(3t)e‘“
1.2 f(t) = 5cos(3t)e‘t +t? cos(St)
1.3 f(t) = et sen(2t)
14 ft)=(¢c-4)e~* u(t-4)
1.5 f(¢t) = cos(2t) - 4 sen(5¢)
2. Determine la transformada de Laplace de las funciones

mostradas en las graficas.
2.1

2.2
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3. Determine la transformada inversa de las siguientes
funciones por el método de fracciones parciales.

4s -5
O
3.2 F(S)Z 552+3S+2
' s®+ 552+ 8s + 4
33 F(s) _ 14s+ 3
' s*+ 853+ 14s2 + 12s
34 F(s)= 8(s+2)
' s(s* + 10s + 20)
2
3t F(s) _ 2(5 +5s +1)
s(s+ %)(sz + 55+ 5)
3.6 F(s) =M
5(52 +s+ 2)

4. Resolver las siguientes ecuaciones diferenciales usando
transformada de Laplace.

41 y"+4y'+5y=8cost, y(0)=0,y'(0)=0

42 5y"+3y'+2y=8, y(0)=1,y(0)=1

43 x"+3x"+x'+3x=4 x(0)=1,x(0)=2, x"(0) =5

44 Xx"'+2x"+5x"+6x=3f(t) +2 % donde f(¢) =
x(0)=1,x'(0)=0, x"(0)=0

4.5 2x"+12x"+ 10x = 6cos(4t) x(0) =1, x'(0) =8
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5. Determine la transformada inversa de las siguientes funcio-
nes usando el teorema de convolucion de funciones.

51 F(s) = %
52 F(s) = (52+4)
53 F(s) = ﬁ
5.4 F(s) = ——05

s+ 28+ 45+ 8
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10.

11.

12.

13.

14.

15.

Capitulo 2. Fundamentos matemdticos. La transformada de laplace.
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CAPITULO 3

LA FUNCION DE TRANSFERENCIA
Grdficos de flujo de senal y diagramas de
bloques

Introduccion

En la teoria de control muy frecuentemente se usan las fun-
ciones de transferencia para describir las relaciones entre la en-
trada y la salida de componentes o de sistemas que se modelan
por medio de ecuaciones diferenciales lineales invariantes en
el tiempo; se comenzara por definir la funcién de transferencia,
para luego calcular la funcidn de transferencia de sistemas re-
presentados en diagramas de bloques y en espacios de estado.

Definicion de funcién de transferencia

La funcidon de transferencia se define como el cociente de la
transformada de Laplace de la salida (funcién de respuesta del
sistema) y la transformada de Laplace de la entrada (funci6n
excitacion), bajo la suposicion de que todas las condiciones ini-
ciales son cero, es decir, se considera que el sistema bajo estu-
dio esta en reposo.

R(s) = | 6(s) —C(5)

Figura 11. Representacion de la ganancia de un sistema

Para el sistema ilustrado en la Figura n°® 11, la salida R(s) es
el producto de la ganancia G(s) y la entrada R(s), lo que implica
que C(s) = R(s) G(s); la ganancia del sistema es entonces G(s)

C(s
= _R( ); para sistemas descritos por ecuaciones diferenciales li-
S
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neales e invariantes en el tiempo, tal como:

bxM+b x"l+b  x"2+..+b Xx'+b X
la ganancia viene dada por:
_Y(s) b s"+b,  s" +..b s+b

1 1 0 30
X(s) as+a_ s"'+..as+a (30)

Para el andlisis de los sistemas de control usaremos el mode-
lo a lazo cerrado, el cual nos servira para el calculo y represen-
tacion de cualquier sistema expresandolo en la forma ilustrada
en la Figura n°® 12, cabe destacar que la definicion de G(s) se
han considerado para sistemas en reposo, lo que traduce que
las condiciones iniciales son cero.

R(s) + E(s) o) c(s) N

A

H(s)

Fig. 12. Modelo de sistemas de control a lazo cerrado.

A continuacién analizamos el diagrama de bloques del siste-
ma mostrado en la Figura n° 12; utilizando la definicién ante-
rior de ganancia, obtenemos a:

C(s) = G(s) E(s) y E(s) = R(s) - C(s) H(s),
y si ahora combinamos las ecuaciones despejando C(s) de la

segunda y sustituyéndola en la primera para determinar la ga-
nancia total del sistema,
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G(s) = %,

obtenemos que:

C(s) = G(s)[R(s) - C(s)H(s)];

asi mismo operamos y obtenemos,

¢(s) = G(s)R(s) - C(s)G(s)H(s),

y finalmente despejamos a C(s)lo que nos da:

C(s) + C(S)G(S)H(s) = G(S)R(s),

luego,

G(s)R(s)
) = T3 6OHE)

para obtener finalmente:

_C(s) . 6(s)
G,(s) = R " TGO (31)

donde la ecuacién caracteristica esta definida por:

1+G(s)H(s) =f(0) =0, (32)
y la cual nos sera muy util para estudiar la estabilidad de los
sistemas.

Estas ecuaciones representan el modelo matematico a uti-
lizar en el andlisis del comportamiento y la estabilidad de sis-
temas de control de lazo cerrado que puedan reducirse a este
modelo. Es importante hacer notar que el procedimiento segui-
do para encontrar la ganancia del sistema, no es el mas efectivo;
sin embargo, se utilizé por razones de sencillez y de ilustracion.
Mas adelante en este capitulo mostraremos algunos métodos
mas efectivos para sistemas mas complejos.
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Propiedades de la funcién de transferencia

Las propiedades de la funcién de transferencia quedan resu-
midas de la siguiente manera:

a) La funcidn de transferencia esta definida s6lo para sistemas
lineales invariantes en el tiempo, no esta definida para siste-
mas no lineales.

b) La funcién de transferencia es independiente de la magnitud
y naturaleza de la entrada o funcién de excitacion.

¢) Todas las condiciones iniciales son cero.

d) La funcidén de transferencia de sistemas continuos es expre-
sada s6lo como una funcion de la variable compleja s, para el
caso discreto los sistemas son modelados por ecuaciones de
diferencias y la funcion de transferencia es una funcién de z,
donde la transformada Z es la usada para este caso.

e) Sise conoce la funcién de transferencia de un sistema, se es-
tudia la salida o respuesta para varias formas de entradas
con la intencién de conocer las caracteristicas del sistema.

Volvamos a la definicion de funcién de transferencia de
ecuaciones diferenciales invariantes en el tiempo mostrada en
la ecuacidn (30), ésta se denomina estrictamente propia debido
a que n > m, implica que el grado del polinomio del denomina-
dor debe ser mayor al grado del polinomio del numerador.

Funcion de transferencia de sistemas de muiiltiples
entradas y multiples salidas

La definicién de la funcién de transferencia se puede exten-
der a sistemas con multiples entradas y multiples salidas, defi-
niendo en este caso una matriz de ganancias. Para ilustrar esto
mostramos el siguiente caso: sea el sistema definido por dos
entradas y dos salidas mediante las ecuaciones:

Y,(5) = G,(s) R,(s) + G, (s) R, () (33)
V,(5) = G,i(5) R,(5) + G,,(s) R,(s) (34)
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La salida del sistema queda representada por el vector:
v (o) ]

- 791
[ Y,(s) |

la entrada por el vector:
R ()]

-]
| R,(s) |

y la matriz de Ganancia se define entonces por:

_ Gll(s) GlZ (S)
=6, 6,6 |

Generalizando para el caso de m entradas y n salidas, se ob-
tiene que la matriz de ganancia queda definida por:

(6,(5) 6,,(5) 6,(s) - G,
G,i(5) Go(5) Gs(s) - G,
Gnm(s) = G31(S) G32(S) 633(5) ) 3m (35)

6,(5)6,(5)6,(5) - 6,

)

D D

Diagrama de bloques de un sistema

Un sistema de control puede estar constituido por varios
componentes, el diagrama de bloque es la representacion grafi-
ca en bloque funcional de las funciones que representan a cada
componente que conforma el sistema, los diagramas muestran
las relaciones existentes entre estos diversos componentes. Asi
mismo, es importante destacar que la representacion del siste-
ma es realizado mediante el uso de figuras geométricas que a su
vez representan los dispositivos o componentes que estan en-
cargados de realizar funciones especificas. Generalmente son
rectangulos, cuadrados (bloques) y circulos que se interconec-
tan mediante lineas rectas orientadas que indican el flujo de la
sefal o de la informacion.
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Un diagrama de bloques representa las etapas mas impor-
tantes de un sistema sin hacer énfasis en las caracteristicas
internas de cada etapa o bloque, sino mas bien en su relacion
entre la entrada y la salida, la cual puede ser expresada mate-
maticamente por la funcién de transferencia. Generalmente el
diagrama de bloques se expresa en el dominio de s; sin embar-
go, también se puede expresar en el dominio de t.

Elementos de un diagrama de bloques

a) Bloque funcional: se representa por un rectangulo y
hace referencia a dispositivos que realizan operaciones mate-
maticas dentro del sistema, también puede decirse que repre-
sentan una planta.

b) Sumador o comparador: esta representado por una cir-
cunferencia dividida donde cada porcién de ella debe indicar
un signo matematico de suma o resta y hace referencia a que
la salida es la suma algebraica de las sefiales que ingresan al
sumador.

c) Punto de bifurcacion: es el punto del cual una sefial que
sale de un bloque que va de manera concurrente a otros blo-
ques o puntos de suma, en este punto se derivan lineas dirigi-
das para indicar que se ha tomado una muestra de la sefial de

salida del bloque funcional.

Bloques
Sumador funcionales

R(s) + E(s)

G(s)

Punto de
bifurcaciéon

H(s)

Fig. 13. Elementos de un diagrama de bloques.
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EjEMPLO 1

A continuacién mostramos un ejemplo ilustrativo de un
diagrama de bloques para un sistema con dos salidas y una en-
trada.

i) I
" - o (S )
— G,(s) >
LD B
. ¢,(s)
— G,(s) >
) ]+

Fig. 14. Diagrama de bloques de un sistema de dos salidas.

Representacion de ecuaciones diferenciales por diagra-
ma de bloques

Para representar una ecuacién diferencial invariante en el
tiempo de orden “n” se debe aplicar el método que se describe
en el siguiente ejemplo:

EJEMPLO 2

Determinar el diagrama de bloques de la ecuacién diferen-
cial de tercer orden:

4"+ By 12y + 2y =f(t), ft) =eu(t)

Primer paso: despejar la derivada de mayor grado.

1
-2y"-3y —3Y

Segundo paso: construir el diagrama de bloques usando la
ecuacion anterior.



72  Capitulo 3. La funcién de transferencia. Grdficos de flujo de sefial...

Para construir el diagrama de bloques de la ecuacién dife-
rencial se debe partir de la ecuacion del primer paso, como se
ve, la suma de todas las derivadas de menor orden, mas la sefial
de entrada es igual a la derivada de mayor, por lo tanto se debe
colocar a la salida del sumador. Para encontrar las derivadas de
menor grado se debe integrar tantas veces como el grado de la
derivada lo indique. Asi mismo, se deben colocar bloques fun-
cionales con los coeficientes de las derivadas que deben partir
desde cada una de ellas para conectar con el sumador e igual-
mente con la entrada, las cuales deben de llegar al sumador in-
dicando el signo que corresponda, indicado en la ecuacién del
primer paso, quedando el sistema como el mostrado en la Figu-
ran®15.

fs) I, +,Oy,fj=fyfy

\d
\/

A
w
A

) |

Fig. 15. Diagrama de bloques de la ecuacién diferencial.

Obsérvese que todo lo que llega al sumador da como resul-
tado a y'"; esto quiere decir que se cumple estrictamente la
igualdad de la ecuacién despejada en el primer paso, luego las
integrales seran sustituidas por 1/s al aplicar la transformada
de Laplace al diagrama de bloques donde la salida sera Y(s) y
la entrada F(s), las realimentaciones con valor de -2, -3 y -1/2
representan los coeficientes de las derivadas de menor orden

quey”'.

El siguiente diagrama ilustra la forma de representar una
ecuacioén diferencial invariante en el tiempo en el dominio de
Laplace, para ello se debe sustituir las integrales por su trans-

1
formada, la cual esta representada por —y cambiar las entradas
S
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y las salidas en funcién de s. Asi mismo podemos decir que para
cualquier ecuacién diferencial con coeficientes constantes debe
tener la misma forma, s6lo pueden cambiar los retornos en los
bloques dependiendo de los signos asociados a los coeficientes
de las derivadas de menor orden que la despejada.

LOEN py ——()— 1/s<J A pyn R N ER(O]

A

< 2

A
w
A

A

Y2

Fig. 16. Diagrama de bloque final en el dominio de Laplace.

EJEMPLO 3
Determine el diagrama de bloques de la ecuacion diferencial
yr+ey"-3y"+2y'+y= e‘t,u(t),
Siguiendo el proceso del ejemplo anterior, primero despeja-
mos la derivada de mayor orden

yr-etu(t) -6y +3y" -2y -y

y el diagrama de bloque resultante se dibuja en la Figura n°® 17.

mnr

Para el caso de sistemas de ecuaciones diferenciales inva-
riantes en el tiempo, se sigue el mismo proceso y se respeta la
igualdad de las ecuaciones, conectando una variable con la otra:
este tipo de caso es el mas comun en sistemas de control, por-
que en un sistema no sélo se observa y se controla una variable,
sino varias variables simultaneamente, donde algunas podrian
ser entradas y otras salidas, dependiendo del caso; por ello hay
que definir cudles variables son salidas y cudles variables son
entradas o de proceso, para de esta forma construir de manera
optima el diagrama de bloques del sistema. Hay algunos auto-
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w
A

A
o))

A
N
[

Figura 17. Diagrama de Bloques de la ecuacién diferencial de cuarto orden.

res que en este tipo de situacion realizan cruces en el diagrama;
sin embargo, esto no es recomendable porque pudiera crear
confusion, por ejemplo, un elemento de gas, digamos, podria
cruzarse en el diagrama con elementos eléctricos o flujo con
presion, etc., lo que no sucede en la realidad. Por esta razon, tra-
taremos siempre de construir un diagrama de bloque sin que se
realicen cruces en las realimentaciones.

EJEMPLO 4

Dado el sistema de ecuaciones diferenciales invariantes en
el tiempo, con condiciones iniciales iguales a cero.

y'+3x' -2y +y=e3
x"=5y'+7x'-2x-2y=¢
Toémese X como la variable de salida y Y como la variable de
entrada, asi mismo se tomanfl(t) = e‘3t,fl(t) = e‘como entradas,
que a su vez se convertiran en el diagrama de bloques en Fl(t)
y Fz(t), respectivamente. Siguiendo el procedimiento ilustrado
en el Ejemplo n° 1, obtenemos:
y'=e3-3x"-2y' -y
x"=¢e" +5y'-7x"-2x+2y
y el diagrama de bloques resultante se muestra en la Figura n°
18.
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v(s) + ¥+ X(s)
—> 1/s 1/s > USJ > 1/s

\

A

F(s)  LZ

Fig. 18. Diagrama de bloques del sistema de ecuaciones.

Grdficos de flujo de serial de un sistema

Los diagramas de bloques son muy utiles para representar
las interrelaciones entre las variables controladas y las varia-
bles de entradas; sin embargo, para sistemas muy complejos el
proceso de reduccién por diagrama de bloques es muy engo-
rroso y dificil de completar, pero un diagrama de bloque y el
grafico flujo de sefial contienen la misma informacién y no hay
ninguna ventaja de uno sobre el otro, sélo hay una preferencia
personal por el grafico de flujo de sefial como método que faci-
lita el calculo de las ganancias de sistemas mas complejos.

Definicion del grafico de flujo de seiial

La representacién de un diagrama de bloques en segmentos
de rectas orientadas, como caminos orientados desde las entra-
das hasta las salidas de un sistema dado.

Elementos de un diagrama de flujo de seial

a. Nodo: estarepresentado en el grafico de flujo de sefial como
un punto, a su vez él representa las variables del sistema.

b. Nodo de entrada: también llamado nodo fuente, es aquel
donde sdlo salen ramas.

c. Nodo de salida: es aquel nodo al que s6lo le llegan ramas.

d. Rama: es un segmento de recta orientado que parte de un
nodo y llega a otro nodo, con ganancia y direccién asociada.
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Ganancia asociada a la rama
Variable de entrada Variable de salida

Vo

X(s) ® > * Y(s)
Y(s)

Y(s) = G(s) X(s), 0 G(s)=—~=

X (s)

e. Trayectoria: es la sucesion continua de ramas que van en
una misma direccion.

f. Trayectoria directa: es aquella trayectoria que comienza
en un nodo de entrada y termina en un nodo de salida del
sistema.

g. Ganancia de una trayectoria: es el producto de todas las
ganancias de las ramas que conforman una trayectoria.

h. Malla: lazo o bucle, es aquella trayectoria que se origina y
termina en un mismo nodo.

i. Ganancia de un lazo o malla: es el producto de las
ganancias de todas las ramas que forman ese lazo o malla.

H(s)

G(s)

>

Fig. 19. Malla o lazo.

j- Lazos independientes (no se tocan): son aquellos lazos
que no tienen nodos en comun.

Representacion de un sistema en diagrama de flujo de
senal

Para representar un sistema con un diagrama de flujo de
sefial, previamente debe haberse construido el diagrama de
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bloques y solo a partir de alli, se debe respetar exactamente
la constitucién del mismo, es decir, no se debe alterar ningtn
elemento, se debe sustituir cada bloque por una rama, las reali-
mentaciones deben sustituirse por lazos, s6lo debemos indicar
las variables de salida y las variables de entrada del sistema.
Para ilustrar el procedimiento, a continuacion se da un ejemplo.

EJEMPLO 5
Sea el sistema mostrado en la figura:

A

H,(s)

\

— G,(s)

R(s)

G,(s) >

Hy(s) [

—H,(s)

Ci(s)

R(s)
1 Gy(s)

—Hy(s)

Fig. 20. Grafico de flujo de seial del sistema del Ejemplo 5.
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Métodos para determinar las ganancias de un sistema
usando grdfico de flujo de serial o diagrama de bloque

Método de reduccion de diagramas de bloques

La representacion en diagramas de bloques a menudo se
pueden reducir a un diagrama de bloques simplificado, que
mostramos en la Figura n° 12 de este capitulo como modelo de
control, el cual ya conocemos su analisis y resultado; tales re-
ducciones son aplicadas de acuerdo a las reglas que se ilustran
en la Tabla n° 1, estas operaciones seglin estas reglas se deno-
mina algebra de bloques.

Tabla 1. Reglas de reduccion en los diagramas de bloques.

DESCRIPCION
1. Combinacién de bloques.
DIAGRAMA ORIGINAL EQUIVALENTE
X, X, X, X, X,
—> G, > G, —> —> GG, —>
DESCRIPCION
2. Movimiento de un punto de separacién anterior a un bloque.
DIAGRAMA
ORIGINAL EQUIVALENTE
XZ
X, X, — G
O—> 6 —
L ;
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(TABLA 1. Continuacion)

DESCRIPCION
3. Movimiento de un punto de separacion posterior a un bloque.

DIAGRAMA ORIGINAL
Xl XZ
_.. Gl :
4—
EQUIVALENTE
Xl XZ
> G —>

DESCRIPCION
4. Movimiento de un punto de separacién anterior al bloque.
DIAGRAMA ORIGINAL EQUIVALENTE
X1 Xz
> G [— X, X,
_> Gl
Xl
Xl
<«— 1/,
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(TABLA 1. Continuacion)

DESCRIPCION
5. Movimiento a un punto de suma posterior a un bloque.
DIAGRAMA ORIGINAL EQUIVALENTE
X1 X3
—(O—> ¢ —>
L, G, —>Oi> T N
1 XZ
T X, 1/G, |[&—
DESCRIPCION
6. Eliminacién de un lazo de realimentaciéon
DIAGRAMA ORIGINAL EQUIVALENTE
X
O——> ¢, >
T Xl—» G,/(1+ G, H,) —Xﬁ
H, <
EJEMPLO 6

Determinar la ganancia del sistema mostrado en la Figura
n° 21 usando las reglas de la Tabla 1 para la reduccién de los
diagramas de bloques usando sus equivalentes.

Fig. 21. Diagrama de bloque del sistema de una entrada y una salida.
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Primer paso: se aplica la regla n° 2 equivalencia del movi-
miento de un punto de separacion anterior al bloque G, de la
Tabla 1, nos queda:

Segundo paso: se aplica primero la regla n° 1 de la Tabla n°
1. Combinacion de Bloques G,, G, y luego regla n° 6, eliminacion
de un lazo de realimentacion alos bloques G, G, y H,, lo que nos
da como resultado:

> Y(s)

R(s) #

(b

-

Tercer paso: en primer término se aplica la regla n° 6 de la
Tabla 1, eliminacién de un lazo de realimentacién a los bloques.
H G,G,

2

y_
G, *7 1-G,GH,

4

luego se vuelve aplicar la misma regla a los bloques resultantes
de la operacidn anterior.

c G,G,G,
Y1-G,GH,-G,GH,

, H, nos queda:
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R(s) + GGG, UON
i 1 T-GGH, +GGH,
[ |
H, |
()
R(s) GGGG Y(s)
1°2°3"4
T PT-GCH +GOH +COGGH,[

(d

Finalmente, la ganancia del sistema queda definida con la
expresion que esta contenida en el ultimo bloque producto de
la reduccion del diagrama de bloques, y se obtiene:

Y(S) _ Gl Gz G3 G4 - G(S)
R(s) 1-G,GH +G,GH,+G G,G, G,H,

Formula de ganancia de Mason para diagrama de flujo
de sefal

El procedimiento que permite determinar la funcién de
transferencia en graficos de flujo de sefial que utiliza la deno-
minada férmula de ganancia de Mason es relativamente simple,
pero se debe tener mucho cuidado con los términos del nume-
rador y denominador porque facilmente podemos pasar por
alto algunos de ellos.

Es importante mencionar que debido a la dificultad que han
manifestado los estudiantes en la comprension del calculo de
las ganancias de un sistema de multiples entradas y multiples
salidas, mostraremos la formula de Mason de otra manera (mas
didactica, usando recursos andragégicos para su facil compren-
sién), con ello evitaremos confusiones. Sin embargo, esta no se
cambia, en esencia es la misma mostrada desde otra perspecti-
va. Para nuestros propésitos la llamaremos sencillamente fér-
mula de Mason ampliada, basado en las definiciones anteriores
de los elementos del grafico de flujo de sefial.
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La férmula de Mason ampliada queda expresada como:

M 4,
G(s) ==—— (36)
donde:

M, = La ganancia de la trayectoria directa de la k-ésima tra-
yectoria directa de una entrada respecto de una salida.

A = 1- suma de las ganancias individuales de todos los lazos
del sistema + la suma de productos de todas las combinaciones
de los lazos independientes que existen en el sistema.

4, = es la parte de 4 conformado por los lazos que no toca a
la k-ésima trayectoria directa.

EJEMPLO 6

Tomemos el sistema del ejemplo n° 5 para encontrar la ga-
nancia del sistema usando la formula ampliada de Mason.

—H,(s)

Ci(s)

Cy(s)

—H(s)

Primer paso: convertimos el diagrama de bloque en el gra-
fico de flujo de sefial usando las definiciones anteriores.

Segundo paso: observamos que es un sistema que tiene una
entrada y dos salidas, lo que significa que hay que calcular dos
ganancias, éstas conforman la matriz columna de ganancias del
sistema, representadas por Cl(s)/R(s) y CZ(S)/R(S). Para este
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calculo aplicamos la férmula ampliada de Mason.

Para el primer caso, Cl(s) /R(s), observamos que so6lo hay
una trayectoria directa, esto significa que k = 1, desde R(s) has-
ta Cl(s).

La ganancia de la trayectoria M, = Gl(s), asf mismo calcula-
mos,

A1 = 1_(_HZGZ )'
luego determinamos el valor de:

4= 1_(_H161 B Hsz) + (_HlGl)(_HZGZ) =

1+GH +G,H,+GHGH,
y observamos que 4, es una parte de 4 que corresponde a los
lazos que no toca esa trayectoria.

Andlogamente procedemos a calcular CZ(S)/R(S), con la di-
ferencia de que hay dos trayectorias directas M, =aG,G, y M, =
Gz(s) y 4, =1, porque no hay lazos que no toque esa trayectoria,

4,=1+GH,

Tercer paso: sustituimos los términos calculados en la for-
mula ampliada de Mason y obtenemos la ganancia del sistema
completo:

G()__ G(9)[1+6,H)]
R(s) 1+G, H +G,H,+GHGH,

11722

De igual forma hallamos:

C(s) __ a6+ G(1+GH)
R(s) 1+G, H +G,H,+GHGH

177172772

las cuales representan las ganancias del sistema.

Ejemplo 7

Determine la matriz de ganancias del sistema mostrado en
la Figura n° 22.
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\

- [
2 |
R, N + C,
— f =
5 |

Fig. 20. Diagrama de bloques de un sistema de dos entradas y dos salidas.

Usando el mismo procedimiento anterior:

-3
R,(s) ¢,(s)

> Cz(s)

Observemos que hay una matriz de cuatro ganancias, Gll(s),
Glz(s), GZl(s), Gzz(s), aplicamos la féormula ampliada de Mason y
obtenemos las ganancias:

1

S
611(5) = W’
1+—+—+0
s s

notese que se suma cero porque no hay lazos independientes,
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S
s2+ 3s +10

Gy,(s) =

y andlogamente obtenemos las demdas ganancias,

2
s? 2
G = = ,
12(5) 3 10 2+ 35 +10
1+ —+—
s s
5
s? -5
G, . (s)= = - ,
21() 3 10 s2+ 35 +10
1+ —+ —
s s
l 1+E
c ()_;_ (s+3)
27310 2 35 410
1+ — + —
s s?

Introduccion a las matrices de estado

El método de variable de estado se utiliza para describir,
con un sistema de ecuaciones diferenciales de primer orden, a
un sistema lineal o no lineal variante o invariante en el tiempo.
Este método ha sido utilizado desde hace mucho tiempo en la
descripcion de sistemas dinamicos.

Definicion de ecuacion de estado

Se denomina variable de estado al conjunto linealmente in-
dependiente de variables que se utiliza para especificar el esta-
do de un sistema cuyo estado se describe mediante un nimero
finito de variables de estado, este sistema se conoce como sis-
tema finito. La ecuacién de estado debe formularse de tal modo
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que si se obtiene el valor del sistema en un instante dado (con-
dicién inicial) junto con los valores de las variables de entra-
da para ese momento y para toda ¢, entonces la disposicion del
sistema y de estas variables se podra determinar su valor para
cualquier otro momento ¢, la solucién del sistema. La forma ma-
tricial de la ecuacion de estado es:

x'(t) = Ax(¢) + Bu(t), (37)

donde:
x(t): Es el vector de estado,
A : Matriz de coeficientes de n x m.
u(t): Es el vector de entrada o de excitacion.
B : Matriz de distribuciéon n x m.
La ecuacion de estado se escribe de la forma:

I

Xl all alZ : aln Xl bll blZ : alm ul

I

XZ aZl aZZ : aZn XZ bZl b22 : aZm uZ

= +

I

Xn anl anZ ) ann Xn bnl an ) anm un
(38)

Ecuacion de estado de una ecuacion diferencial o de un
sistema de ecuaciones diferenciales

«__n

Una ecuacion diferencial ordinaria de orden “n”, con coefi-
cientes constantes, se puede expresar como una ecuacién de es-
tado. Este proceso de transformacion se describe en el Ejemplo
n° 8 a continuacion.

EJEMPLO 8
Dada una ecuacion diferencial con coeficientes constantes:
2x"" - 6x"+4x"+ 10x = e‘3‘,u(t)
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x(0)=1, x'(0)=2, x"(0) =-2
Primer paso: se despeja la derivada de mayor orden.

-3t t
x""'= e—,u()+ 3x"-2x"-5x

Segundo paso: se efectian cambios de variables en la for-
ma indicada a continuacion. Se puede usar la letra que se de-

see, siempre y cuando no sea igual a la letra de la variable de la
ecuacion diferencial.

Z1=X
z =z
27 %1
—_ I
zZ,=27,

’ 1 3
z,= E e ‘,u(t) +3z,-2z,- 5z,

Tercer paso: se construye la matriz de estado usando las
ecuaciones anteriores.

-~

A 0 1 0| z 0

) 1
z, =] 0 0 1 ||z |+| 0 |e*u(t) z(0)=| 2
z, -5 -2 3 Z, 1/2 -2

Esta forma matricial representa la ecuacién de estado de la
ecuacion diferencial dada.

Ahora ilustraremos el método para el caso de un sistema de
ecuaciones diferenciales con coeficientes constantes.

EJEMPLO 9

Dado el sistema de ecuaciones diferenciales ordinarias:
x" -3y'-5x"- 6y =f1(t)
y"' -5x"-3y'+8x-y =f2(t)

Para este caso se sigue el procedimiento anterior, sélo que se
debe realizar dos veces.
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x":fl(t) +3y'+5x"+ 6y
y”:fz(t) +5x'+3y'-8x+y
Los cambios de variables a ejecutar son los siguientes:

Z, =X
—_ I
Z,=24
)
z,=2,

z,= f,(t) + 3w, + 5z, + 6w,
w, =y
w,=w,
w, = fz(t) +52,+3w, -8z, +w,
La matriz de estado queda de la forma:

zl1To 1 0 0]z 0 0

z, 5 0 6 3 zZ, 1 0 [fl(t)
= +

willo oo 1 ||wl|]|o ol

w) -8 5 1 3 w, 0 1

La ecuacién de estado y el grafico de flujo de seiial

La ventaja de utilizar las ecuaciones de estado radica en el
hecho de que es muy facil representar una ecuacién de estado
mediante un grafico de flujo de sefial y, por consiguiente, cal-
cular la ganancia del sistema; ahora describiremos el proceso.

EjEMPLO 10

Dado la siguiente matriz de estado:

X, 0 -6|]|x -1
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Tome a x, como variable de salida y siga el siguiente proce-
dimiento.
Primer paso: se escriben las ecuaciones matriciales:

Xi== 65,/ (1)
x,=x,-5x,+3f(¢)

Segundo paso: se aplica transformada de Laplace a ambos
lados de las ecuaciones:

5x,(s) = =6x,(s) = £ ()
5x,(s) = x,(s) = 5x,(s) = 3/ (s)

5(5) =2 65) -~ £, 9)
5(6) = 5,) -2 1) + 21 (6)

Tercer paso: construir el grafico de flujo de sefial:

\

EjEMPLO 11

Considere el sistema de doble entrada y doble salida, cuyas
ecuaciones de estado son las siguientes:

:—ZX +X, +5x +10R

=-3x, + 2x

2 3

I
1
r

XZ
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x,=—4x,+ 2R,
donde las salidas del sistema son:
yi=8x +6x,
y,=4x, +3x,
Tome como variable de salida a x,.

En este ejemplo usamos las definiciones de variables de sa-
lida y la salida del sistema, el primer término x, representa el
nodo final de la trayectoria directa o trayectorias directas que
tiene el grafico de flujo de sefal del sistema. Como el nodo x,
representa una variable del sistema, entonces esta variable re-
presenta la salida de todos los caminos del grafico de sefial. Es
posible encontrar sistemas que tienen varias variables de sali-
das y estas pueden formar parte de la salida o salidas del sis-
tema. En segun)(do término, la salida del sistema puede estar
representada por una sola variable de salida o por las sumas
algebraicas de las variables que conforman el sistema, forman-
do una transformacién lineal, las cuales son operaciones de su-
mas algebraicas de sefiales entrantes que generan una sefial de
salida.

v,(s)

v,(s)
Siguiendo el procedimiento anterior se obtiene el siguiente
grafico de flujo de sefial:
Obsérvese que la variable de salida del sistema es x, y las
salidas del sistema son y,, y, que son transformaciones lineales
dex,, x,, X,.
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PROBLEMAS

1. Determine el diagrama de bloque y el grafico de flujo se
sefial de las siguientes ecuaciones diferenciales y sistemas de
ecuaciones diferenciales. Donde las variables y(t), x(t), r(t), son
las variables de salida, entrada y excitacién, respectivamente,
del sistema.

y"+2y"+5y'+6y=3r'+r

y"+10y" +y'+ 5y =5r .

y"-10y"+2y'+y+2 6‘. y(r)dr =r'+2r

2y"+y'+ Sy:r(t— 1)+r
3y"-6x'-3y'-2x=e*

{x" -5y'+4x'-6y=¢

y"+2y'+4y' = 3sen(5t)
y"+ 2y’ + 6y = 4sen(2t) + 3cos(3¢)

y"'+2y'+3x= rl(t) + rz(t)
xX"+3y'-4x+y= rz(t) +r)

2. De las ecuaciones diferenciales y los sistemas de ecuaciones
diferenciales del problema anterior, determinar las ecuaciones
de estado que representan estos sistemas.

3. Determine la ganancia de los sistemas usando algebra de
bloque y luego compruebe usando la férmula ampliada de
Mason.
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6.0
s + + X Y. (s
Lo 2O—fi0 6 ]—»( )

Gy(s)

G,(s)| |Gals)
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3.4

\
D)

3.5. En los siguientes diagramas de flujo de sefal determine
la ganancia del sistema.
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4. Determine el grafico de flujo de sefal para los sistemas ex-
presados en diagrama de estado, considere las condiciones ini-
ciales cero.

4.1
X} 2 -3 | x 10 et
X, 1 -2 x 0 1| |nu()
4.2
X} 2 1 X, te?
r = +
X -4 2 X, e
4.3
X} -4 2 X, -1

= + H(t)
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4.4
X) 0 -2|]x -3
E + :“(t)
X, 1 -2 X, 1
4.5
X} 0 1]|]x 0
= + ,u(t)
X, -2 -3 X, 1
4.6
x! -2 -2 0 X, -1
x;0|=] 0 0 1 ||x [+| 0]u()
X, 0 -3 -4]] x, 1
4.7
X} 0 1 0 X, 0
x, =1 0 0 1 x, [+ 1 ,u(t)



10.

11.

12.

13.

14.
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CAPITULO 4

MODELOS MATEMATICOS DE SISTEMAS
FisIcos

Introduccion

Una de las tareas mas importantes en el analisis y diseno
de sistemas de control es el modelar matematicamente los
sistemas fisicos. Los dos métodos mas comunes para modelar
sistemas lineales son el método de la funcién de transferencia
y el método de variable de estado. La funcién de transferencia
es valida sélo para sistemas lineales invariantes en el tiempo,
mientras que las ecuaciones de estado son aplicadas a sistemas
lineales y no lineales.

Aunque el andlisis y disefio de los sistemas de control lineal
han sido bien desarrollados, su contraparte, los sistemas no li-
neales son usualmente muy complejos, por lo tanto los inge-
nieros de sistemas de control con frecuencia tienen necesidad
de determinar como describir de manera precisa a un sistema
matematicamente, pero es mas importante ain hacer conside-
raciones y aproximaciones de manera apropiada, cuando sea
necesario, para que los sistemas puedan ser realmente descri-
tos por modelos matematicos lineales.

El principal objetivo de este capitulo serd mostrar los mo-
delos matematicos de los sistemas de control y sus componen-
tes, los cuales son pasos fundamentales en el analisis de los
sistemas de control. El modelado nos permitira el detalle de
los elementos que conforman un sistema y la naturaleza de su
funcionamiento con el objeto de brindar facilidad en el analisis
y disefio de sistemas de control, el cual mostraremos en la me-
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todologia a aplicar en este proceso.

Metodologia para el andlisis y diserio de un sistema de
control

Los pasos a seguir para el analisis y disefio de un sistema de
control son:

1.

Estudio preliminar del problema o situacién tomando en
cuenta como funciona en la actualidad, las dificultades, li-
mitaciones (desempefio), caracteristicas de operacidn, as-
pectos del sistema que se puede aprovechar.

Determinar los parametros y requerimientos para una opti-
ma operacion del sistema, lo cual estara definido de acuer-
do a las exigencias o necesidades a satisfacer.

Analisis y seleccion de la tecnologia (circuitos, compensa-
dores, sensores, sistema supervisorio, etc.) existente en el
mercado con la finalidad de comparar las versatilidades de
los fabricantes y seleccionar la que mas se ajuste a los pa-
rametros y requerimientos establecidos en la fase anterior.

Disefio de la arquitectura del sistema, con el objeto de es-
quematizar la construccién del modelo o prototipo para fa-
cilitar el analisis su comportamiento.

Propuesta del sistema. En esta fase se muestra el sistema
usando la arquitectura disefiada y la tecnologia disefiada
para su construccién y prueba final.

Verificacion de su funcionamiento aplicando el método de
analisis (Pruebas de sistema).

Para el estudio detallado del modelado de los sistemas eléc-

tricos, mecanicos y electromecanicos nos basaremos en las le-
yes del movimientos y las leyes circuitales, las cuales forman
parte del primer y segundo paso de esta metodologia para el
analisis y disefio de un sistema de control.
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Modelado de sistemas eléctricos

La manera clasica de escribir ecuaciones en los circuitos
eléctricos se atribuye a las dos leyes de Kirchoff y la manera
moderna de representar estas ecuaciones circuitales, utilizan-
do el método de variable de estado, para ello es necesario cono-
cer el modelo matematico de cada uno de los componentes de
un circuito eléctrico, a continuacién se describe:

1. Laresistencia eléctrica

Segun la Ley de Ohm el modelo matematico sobre el voltaje
que produce una resistencia cuando pasa una corriente a través
de ella es V = R expresado en voltios (v) y por consiguiente la

resistencia es R = 7 expresada en Ohmios (Q) (véase en la Fi-

guran® 23).

r 1% v=Ri (39)

Fig. 23. La resistencia.

2. Lainductancia

Segun Joseph Henry (1797-1878) y Michael Faraday (1791-
1867), el voltaje aplicado a una bobina o inductor es directa-
mente proporcional a la razén de cambio respecto al tiempo de
la corriente que fluye a través de este elemento o dispositivo-

di
circuital, lo cual expresa su modelo matematico como V, = d—;,

véase en la Figura n°® 24.
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Fig. 24. La bobina o inductor.

El capacitor
Segin Michael Faraday (1791-1867) un voltaje aplicado a
placas paralelas da por resultado un campo eléctrico entre ellas
y la corriente que fluye es directamente proporcional a la razén
de cambio respecto al tiempo del voltaje del dispositivo circui-

tal y su modelo matematico queda expresado por I = ddtc véa-
se en la Figura n° 25.
+ o)
l { . dv
r v i=C (40)
@]

Fig. 25. El capacitor.

El amplificador operacional

El Amplificador operacional usualmente llamado (Op Amp),
es un dispositivo con dos terminales de entrada, denominados
+y - o0 bien entrada no inversora y entrada inversora, respecti-
vamente. El dispositivo se conecta ademas a una fuente de co-
rriente continua (+V_y -V ), la referencia comun para las entra-
das, la salida y la fuente de alimentacidn se encuentra fuera del
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amplificador operacional se denomina tierra (-V_), la tension
de salida depende de la diferencia de potencial en las entradas,
despreciando los efectos capacitivos, el modelo matematico
para el caso inversor es el mostrado en la Figura n° 26 es:

RZ
- — 41
0 (41)

R

2

VW

.|)_:>t _
o

Fig. 26. Amplificador operacional.

Fuentes de voltajes y corrientes

Las fuentes de corrientes y de voltajes seran consideradas

entradas a los circuitos y pueden ser independientes o depen-
dientes, a continuacién se muestra:

OO

N

Fig. 27. Fuentes independientes.



104 Capitulo 4. Modelos matemdticas de sistemas fisicos.

MO

Fig. 28. Fuentes dependientes.

Usando los modelos matematicos de cada uno de los com-
ponentes y usando las leyes circuitales de Kirchoff, podemos
determinar el grafico de flujo de seial y la ganancia del sistema,
partiendo de la linealizacion de las ecuaciones diferenciales del
circuito, en otras palabras las ecuaciones de estado de los siste-
mas eléctricos dados, esta es una forma moderna y efectiva de
determinar la ganancia de estos sistemas.

EJEMPLO 1

Determine la matriz de estado y el grafico de flujo de senal
del circuito mostrado en la Figura n° 29.

R L
VW P
i(t)

NG -

Fig. 29. Circuito RCL.

Primer paso: se aplica las leyes circuitales de Kirchoff para
encontrar las ecuaciones diferenciales que representan el cir-
cuito, tomando como variables de estado i, V..
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diL
LKV: —VS+RiL+L—+ VC= 0
dt
dVC
LKC:i, =—
dt

di
Segundo paso: se despeja las derivadas d;' th de las ecua-

ciones dadas:

di, V. i V,

da L L L

Tercer paso: construir la matriz de estado.

I N 1
I L L L -
7 = + L VS
Vc 1 VC
— 0 0
C

Cuarto paso: construir el grafico de flujo de sefial.
i(0) v(0)

1/s 1/s
Vs 1)L 1/s 1/c 1/s

W:’ (s)

4
4
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Quinto paso: ganancia del sistema.

Considerando las condiciones iniciales cero, la ganancia
aplicando la féormula ampliada de Mason es:

1
LC 1
G(S) = =
() 1 LCs*+ RCS +1
Sf+— 5+ —
L LC

Ejemplo 2
Determine la matriz de estado del circuito mostrado en la
Figura n°® 30.

_— | —

/1

"© 3 7

Fig. 30. Circuito eléctrico combinado.

Siguiendo el procedimiento anterior obtenemos:
Primer paso:
=1 +1,

dIC
—VS+R11+L—=0
dt
dIL
—LE+L21C+ Vc=0

Segundo paso: se combinan las ecuaciones anteriores de la
siguiente forma:
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dVe
[=1 +C—
dt

L

( dVC) av.
-Vs+R(l +C—)+RC—+1Vc=0
e dt 2dt

av Vs R Ve

C 1

- - I -
de C(R+R,) C(R+R)" C(R,+R,)

Asi mismo,
dl av dl
L—=RC—+Vc, L—
dte dt dt
— VS _ IL VC
*\R,+R, ""?R+R, R +R, °©
De donde,
dl R R R R

L 2 1772 1

= Vs 1 Vi
dt L(R,+R) L(R+R)" L(R+R)

Tercer paso: matriz de estado.

[ -RR, R, | R,
Ll LR +R) L(R+R) || | | L(R,+R) v]
V. R, 1 v, 1

| C(R,+R,) C(R,+R,) C(R,+R,)
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Cuarto paso: construir el grafico de flujo de sefial.

Dejamos al lector el calculo de la ganancia a partir del grafico
de flujo de senal, el cual se resuelve de manera analoga al del
Ejemplo 1.

1
C(R, +R,)

Vs » Vc(s)

L(R, +R,)

RI
L(RI + RZ)

Modelado de sistemas mecdnicos

La mayoria de los sistemas de control los elementos mecani-
cos son tan buenos como los componentes eléctricos. Algunos
sistemas mecanicos tienen elementos hidraulicos y neumaticos.
Desde el punto de vista matematico las ecuaciones que descri-
ben los elementos eléctricos y mecanicos presentan analogias,
de hecho el movimiento de los elementos mecanicos pueden
describirse en varias dimensiones, traslacional y rotacional o
combinacién de ambos. Las ecuaciones que rigen los sistemas
mecanicos de movimiento son a menudo formulados por la ley
de movimiento de Newton.

2. F=ma (42)
Usando esta ley, podemos formular las ecuaciones que des-

criben cada elemento que conforman un sistema mecanico. A
continuacién mostramos.

Sistemas mecanicos traslacionales

a. La masa: se considera un elemento que almacena energia
cinética en el movimiento traslacional, observe la Figura n°
31
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PRLEI
f(t) dt?

[ M

Fig. 31. Modelado de la masa.

b. El amortiguador: representa un elemento de friccion vis-
cosa y una relacion de retardo entre la fuerza aplicada y la
velocidad, la expresion de su modelo matematico es:

dx
F=p (44)

_I
dt
donde [ representa el coeficiente de friccion viscosa.
X
—

Fig. 32. Modelado del amortiguador.

c. Resorte lineal: representa un elemento de respuesta lineal
o proporcional a la fuerza que se aplica sobre él, se puede
considerar como un elemento mecanico que actia como
una correa, cable o resorte, el cual almacena energia poten-
cial. La expresiéon matematica es:

F=kx  (45)

Fig. 33. Modelado del resorte.
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d. La fuerza de friccidon: representa una relacién de retardo
entre la fuerza aplicada que tiene una constante 8 de ampli-
tud con respecto al cambio de velocidad. La expresion de su
modelo matematico es:

dx
F=p — 47
'Bdt (47)
X
—
M
NN

NS y
Fig. 34. Modelado de la fuerza de fricciéon.

e. Fuerzas externas: estas fuerzas son las responsables
del movimiento del sistema mecanico, las cuales pueden
ser motores, palancas y manillas, las cuales quedan
representadas porf(t) en el diagrama del sistema.

EJEMPLO 3

Determinar las ecuaciones dindmicas y la matriz de estado
del sistema mecanico traslacional mostrado.

k, M

PR TVV."

O\
A S S

B,

Fig. 35. Sistema mecanico de traslacion del Ejemplo 3.
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Primer paso: aplicar la ley de Newton de movimiento a la
masa para determinar la ecuaciéon dindmica del sistema, para
ello s6lo se deben identificar todos los elementos mecanicos
opositores al movimiento. Seguidamente, escribir la ecuacion
tomando todas las expresiones de cada uno de los componen-
tes mecanicos identificados previamente como negativos y las
fuerzas externas que generan el movimiento como positivas. La
ecuacion dindmica de este sistema es:

dx d* dx
klx+ﬁ1$mﬁ+kzx+ﬁzazf(t)

Segundo paso: despejar la derivada de mayor grado.

ax f)_ (hrk) (BB ds

dt? m m m dt

Tercer paso: cambio de variable para linealizar la ecuacion
diferencial.

ZI=X
7,-7,
t k +k +
L0 ek @),
m m m

Cuarto paso: construir la matriz de estado.

0 1
Z Z 0 ( )
= + + +1 1 | f(t
Z'2 _ (kl kZ) _ (Bl ﬁZ) ZZ m
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Quinto paso: diagrama de flujo de sefial.

(B,+8,)
LA
1
fs) " m 1/s
- Sz Z(s)
(k, +k,)

m

Se deja al lector como ejercicio calcular la ganancia del sis-

z,(s)
fs)

EJEMPLO 4

tema

Determinar las ecuaciones dindmicas y la matriz de estado
del sistema mecanico traslacional mostrado a continuacion:

1 2
B,
. =
M k| M K,

Fig. 36. Sistema mecanico de traslacion del Ejemplo 4.

Primer paso: aplicar la ley de Newton para determinar las
ecuaciones dinamicas del sistema usando el procedimiento
descrito en el Ejemplo 1, con la diferencia de que cuando ana-
licemos elementos mecanicos que se encuentren entre las dos
masas, se escribird una diferencia de desplazamientos en x, to-
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mando como positivo el desplazamiento de la masa analizada
y negativa el desplazamiento de la otra masa sin analizar, en
nuestro caso, para cuando analicemos la masa n° 1 el desplaza-
miento x, es positivo y x, sera negativo y para cuando analice-
mos la masa n° 2 se invierten los signos.
Masa M,
2 2
kx, +B, ’ o +m ‘ . + kZ(Xl _Xz)
dt dt

1

o, 8 0

Masa M2
d*x d(x -X )
kx, +m, dtzz +p, zdt =+ kz(xz - X1) =0 (2)

Resolviendo y agrupando términos nos queda:

a0 kB

dt? m, m,  m dt

k) (Bep) 0

m, m, dae?

dx, k B, dx, (k,+k,)
+———-——x

a2 m, ' m, dt m

2
2

B, dx
_z2 2 (2)
m, dt
Segundo paso: realizar las cambios de variables.
Zl = )_(1
Z,=17,
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t) k B
Z,= f(—)+—2W1+—2W2
m,m m,

_(k1+kZ)Z _(ﬁl+ﬁ2)z

1 2
ml mZ
W, = xz'
W,=W,
_ k B k +k B
W, = —221+—ZZZ—M Wl——ZWZ
mZ m2 mZ m2
Tercer paso: construir la matriz de estado.
- 0 1 0 0 |- 5 ~ =
Z Z 0
_1 _(k1+kz)_ (B1+Bz) ﬁ ﬁ ! 1
A R e
w, 0 0 0 1 w, 0
i | |k A Gk B |lw| ] o
B - L m2 m2 m2 mZ _ - - - -

Cuarto paso: grafico de flujo de sefal.

—(k]+k2) _(k2+k3)
m

1
n

fs)

_(Bl +Bz) kfz
1/s m 1/s
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Sistemas mecanicos de rotacion

Los sistemas rotacionales son analogos a los sistemas tras-
lacionales (las ecuaciones son de la misma naturaleza o forma),
se usa el mismo procedimiento para determinar las ecuaciones
dindmicas del sistema. Los tres elementos que usaremos en los
sistemas rotacionales se describen a continuacion.

a. El primer elemento es el momento de inercia, el cual es
definido por la ecuacién:

d*o dw(t)

HOR (46)

donde T(t) es el torque o par aplicado, / es el momento de iner-
cia, donde 0 es el angulo de rotacion, y W(t) es la velocidad an-
gular. La ecuacion (48) es analoga a la de masa en un sistema
traslacional, bastara con sustituir T(t) porf(t), m por ]y 6 por
x, tal como es mostrado en la Figura n° 37.

J;

AN
=5

1

Fig. 37. Momento de inercia.

b. El amortiguador es el segundo elemento, el cual estd
definido por la ecuacién:

do
T(t) =B E (49)

donde S, representa el coeficiente de amortiguamiento o de
friccion y donde 6 es el angulo de rotacion, como se muestra en
la Figura n° 38.
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()/Elj 0

T 6
Fig. 38. Amortiguador.

El resorte rotacional: este representa el tercer elemento ro-
tacional, el cual esta definido por la ecuacion:

o(t) = k6 (50)

donde k representa la constante de elasticidad del resorte y 8 es
el angulo de rotacidn, como se muestra en la Figura n° 39.

W]

o6

Fig. 39. El resorte rotacional.

Ademas de estos elementos principales, se debe incorporar
otro elemento no menos importante y muy usado en la indus-
tria y en los sistemas mecanicos tradicionales como lo son los
engranajes, el cual esta definido por las siguientes ecuaciones:

M4 (51)
NZ TZ

y
NG (52)
NZ 01

donde N,y N, representan el nimero de dientes de cada engra-
naje, T,y T, son sus torques o pares mecanicos respectivos, los
cuales son ilustrados en la Figura n° 40.
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Fig. 40. Los engranajes.

EJEMPLO 5

Determinar las ecuaciones dindmicas y la matriz de estado
del sistema mecanico rotacional mostrado a continuacién.

i /%\k
\\\a )1—1 )
&—ig/ 9/

T,(s) 2

Fig. 41. Sistema rotacional del Ejemplo 5.

Primer paso: determinar las ecuaciones dindmicas, siguien-
do de manera analoga el procedimiento de analisis de masas
descrito en los sistemas de traslacion.

Masa J,
d*o,
T(S) =/, de? +k1 (61_92)
Masa J,

d*o,
k(6,-6,)+k,0,+], - 2=0
aso, =l+£6 ) k+k, 0
] ], ° L
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d292 _ k, 0 _(k1+kz) 9

d tz ]2 1 ]2 2

Segundo paso: realizar cambios de variables.

Y, =0,
Y,=Y,

. Tk k,
YV,=—+—X -—Y,
LT A

X =0,
X, =X,
X, =X,
k, (k1+k2)

I R 0 o . o - .

Y Y 0

h LR Lt 0 ERE

Yz _ ]1 ]1 YZ + ]1 T

X, 0 0 0 1 ||x | ]o

_XZ_ ﬁ O _ (kl + kz) 0 _XZ_ i 0 ]
L) ), i

Se deja como ejercicio realizar el calculo de la ganancia del
sistema rotacional.

EJEMPLO 6

Determine la matriz de estado del sistema mecanico de ro-
tacién mostrado.
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Fig. 42. Sistema rotacional del Ejemplo 6.
Siguiendo el proceso explicado en el ejemplo anterior, ana-
lizamos /..

2

7(5) =), d9+k (6.-6)

de donde;
d*o, =1 . k.6, ) k.6,
ac ], ], 1

Luego analizamos el engranajey J..
kl(ez - 91) +T,=0

k,6,- k6, +T, =0

2

d*6 do
Tz(s) =/, dt23+ k0, + B_3

dt
Luego,
n T, n 6 n n
1 1 1 3 1 1
T T T 03:_93' T1: — Tz
nZ 2 nZ 2 n2 nZ

n, \* d?6, n\* n, \*de,
k0, - k0, +],| — 2 thkl—=] 0,+B|— | —=
n,/ dt n, n,/ dt

Realizamos cambio de variables para construir la matriz de
estado:
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X1=61 ylzez
X1=X1 yl yl
T ko k
X,=—+—y - —X
2 ]1 ]1 1 ]1 1
n 2
k3 — +k1
nZ
ok
Y= - Yy

[ 0 1 0 0 |
L ky 0
_)‘;1— ]1 ]1
%, 0 0 0 1
. = n 2
¥, k1 0 - n, _ﬁ
o n, ’ n, ’ ]2
]2 - ]2 -
n, n,
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Sistemas electromecanicos

La corriente eléctrica y el campo magnético interactdan de
dos maneras particularmente importantes. Para comprender
la operacion de la mayoria de los sistemas electromecanicos se
deben considerar dos aspectos, el primero consiste en que si
una corriente i amperios circula a través de un conductor de
longitud L metros y ademas éste es colocado en un campo mag-
nético B Tesla que forme un angulo recto respecto a la corrien-
te, entonces existe una fuerza generada en el conductor queda
expresada en magnitud en Newton por la ecuacién:

F = Li Newtons (53)

Esta ecuacidn es la base de la conversion de energia eléctrica
en trabajo mecanico y es llamada Ley de Motores.

El segundo es la relacion electromecanica importante. Con-
siste en el efecto mecanico de movimiento en voltajes eléctri-
cos. Si un conductor de longitud L metros se mueve en un cam-
po magnético B Tesla a una velocidad v en metros por segundos
y mutuamente forman un angulo recto (By v), entonces el vol-
taje generado en el conductor queda expresada en magnitud en
la ecuacién:

e(t) = BLv Voltios (54)

Esta ecuacion es llamada la Ley de Generadores.

Ahora bien, analizaremos motores de corriente continua
para los casos generador por corriente de campo y motores de
corriente de armadura.

Generador corriente directa (CD)

Un generador CD puede ser usado como un suplidor de po-
tencia, en el cual la potencia requerida para excitar el circuito
de campo es mas baja que el indice potencia de salida del circui-
to de armadura, el voltaje e, inducido en el circuito de armadura
es directamente proporcional al flujo magnético ¢, producido
por el campo y la velocidad de rotacién w, en la armadura ex-
presada como:
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e, = K .pw (55)

El flujo en funcién de la corriente de campo y el tipo de ma-
terial usado. Hasta llegar a saturacion, esta relacion es aproxi-
madamente lineal, entonces el flujo es directamente proporcio-
nal a la corriente de campo:

¢=K,i, (56)

e,= KlKZiwf (57)

Se considerara la velocidad del generador constante y la
ecuacién queda expresada:

e=Ki (58)

El modelo del generador se representa en la Figura n° 37,

donde L,R, Rf, Lf son las resistencias e inductancia de arma-
dura y campo respectivamente.

Rf Ra La

® 43 O, -

Fig. 33. Diagrama esquematico del generador.

Motores de corriente continua controlado por corrien-
te armadura (inducido)

El troque o par desarrollado por el motor mostrado en la
Figura n° 43, es proporcional a la magnitud del flujo ¢, a la co-
rriente de campo i.ya la corriente de armadura i, si supone-
mos que la corriente de campo es constante, y esta es la encar-
gada de generar el campo, el que a su vez es el responsable de
producir el flujo ¢, entonces el flujo es aproximadamente cons-
tante, concluimos que el torque o par puede expresarse:
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T=K i, (59)

K, T=K, i (60)

a

Fig. 44. Motor de corriente de armadura.

Ahora bien, el voltaje generado en el devanado de la arma-
dura del motor, Vpuede ser escrito como:

do
V =K — 61
L= Kp— (61)
Donde K es un parametro del motor, ¢ es el flujo magnético y

% es la velocidad angular, suponemos que el flujo magnético es

constante, por lo tanto la ecuacion queda:

v =k 99

dt

La asuncioén del flujo es muy importante porque si el flujo es
variable, entonces se convierte en una ecuacion no lineal de dos
variables, alli el andlisis es mucho mas complejo y engorroso
por lo que la transformada de Laplace no puede ser usada para

estos casos.

(62)

Motor de corriente continua controlado por corriente
de campo

El motor de corriente continua por efecto de campo convier-
te energia eléctrica continua en energia mecanica, gran parte
del par generado es utilizado para mover cargas externas, asf
mismo cabe destacar que de acuerdo a las caracteristicas de
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funcionamiento que este tipo de motor ofrece, como lo son la
generacidn de un par elevado, controlabilidad de la velocidad
en amplios rangos y adaptabilidad a diversos tipos de métodos
de control, es la razén por la cual son ampliamente utilizados
en sistemas de control, tales como los manipuladores robéticos,
mecanismos de transporte de cintas y unidades de cintas entre
muchos ejemplos que podemos citar. A continuacién mostra-
mos en la Figura n° 45 un diagrama esquematico de un motor
de corriente continua controlado por corriente de campo.

Fig. 45. Diagrama del motor CC controlado por corriente de campo.

El voltaje de entrada se puede aplicar a los terminales de ex-
citacién o a los del inducido. El flujo en el espacio libre en el
motor es directamente proporcional a la corriente de excitacion
o de campo, siempre que el campo no esté saturado, de modo
que:

$=K.i, (63)

Se supone que el par desarrollado por el motor esta relacio-
nado linealmente con ¢ y con la corriente del inducido, es decir:

T, =K Ki (t)i,(t) (64)

Es evidente que para mantener la proporcionalidad de la
ecuacion, la corriente de armadura sede ser constante, mien-
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tras que la corriente de campo es la generada por el voltaje de
entrada, lo que proporciona una sustancial amplificacién de po-
tencia. Entonces se tiene:

T, =Ki(t) (65)

EJEMPLO 7

Determine la matriz de estado del sistema electromecanico
mostrado a continuacioén:

R

a

\ k
) B P\W\—
ST,

T

Fig. 46. Sistema electromecanico del Ejemplo 7.

Primer paso: se aplica la ley circuital de voltaje de Kirchoff.

; dif_
-V +Rf1f+ LfE_ 0

Segundo paso: se aplica la ley de Newton para encontrar las
ecuaciones mecanicas.

2

T ]d 0 K0+ p do
= f— 4 + R
dt* dt

Tercer paso: se relacionan las ecuaciones circuitales y me-
canicas, usando la ecuacién n° 65.

T a6 K do
T=Ki = i-= ] —_—t+— 0+£—

fK I(dt2 Kf det
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Cuarto paso: sustituimos la corriente de campo en la ecua-
cién circuital.

a6 do K
—Vi+R<] £—+_6>

2
K. dt det K,

d(] d29 B de K
+L ——+—0
rdt K dtz K, dt K

f
_V+&ﬁ+(Rff+Lfﬂ>ﬁ

i 3 2
Kf dt Kf dt

R LK\do K
JBBLKNAO K
K )a'x

Quinto paso: construir la matriz de estado, usando los cam-
bios de variables.

x, =6
XZ = )él
).(3 = ).(2
, v (RJ+LB)  (RB+LK) K
X3 = - ]L X3 - ]L XZ—JTX2
(&) 1 0 0
Kf
_ 0 1 0 o]
X X
' 1 0 1 1o
X |= X |+ V,
|| K _RErLE) RIrLA) || x| | K
JL, JL, JL, /L]
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Ejemplo 8

Determine la matriz de estado del sistema electromecanico
mostrado a continuacion:

A=W

Fig. 47. Sistema electromecanico del Ejemplo 8.

Primer paso: se aplica la ley circuital de voltaje de Kirchoff.

di
-V+R i +L 2+V =0
1 a a a dt m

Segundo paso: se aplica laley de Newton para encontrar las
ecuaciones mecanicas.
d*0 0
T =]—+ Ki
dt
Tercer paso: se relacionan las ecuaciones circuitales y me-
canicas, usando las ecuaciones n° 59, 60, 62.

g L T_Jd0 K

= = -—— = —— 4 —

oo T LT TR A K
do

v =k =

Cuarto paso: sustituimos la corriente de campo en la ecua-
cion circuital.

. ] &6 Kg L d J a6 K(9
RO VA A A Vs
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+V =0

J &0 (R])d6 L Kdd RK
+L e

0=0

ey

K de

K dt K,

Quinto paso: construir la matriz de estado usando los cam-

bios de variables.

x, =0
X, =X,
X, =X,
. K R K RK
X3:]_Vi_L_X3_7X2 X,
0 1 0 B 0 7
X X
! 0 0 1 ' 0
X, |= X, |+ v
X, RK K R ||x|]| Kk
L, ] L | L]

Sistemas analogos

Los sistemas que pueden representarse mediante el mismo

modelo matematico, pero son diferentes fisicamente se llaman
sistemas analogos, el concepto de analogia es muy importante

por las siguientes razones:

1. La solucion de la ecuacién que describe un sistema fisico
puede aplicarse a un sistema analogo en forma directa en

otro campo.

2. Untipo de sistema puede que sea mas facil de manejar que

otro, en lugar de construir y estudiar un sistema mecanico,
podemos construir un sistema analogo eléctrico que son
mas faciles de manejar experimentalmente.
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Analogia mecdnico-eléctricas

Hay dos analogias eléctricas para los sistemas mecanicos; la
analogia fuerza-voltaje y la analogia fuerza—corriente.

Analogia fuerza-voltaje

Sistemas Mecanicos Sistemas eléctricos

Fuerza (Par T) Voltaje e

Masa (m) (Momento de

. ) Inductancia L
inercia J

Coeficiente de friccion

. Resistencia R
viscosa 8

Constante del resorte K Reciproco de Capacitancia 1/C

Desplazamiento x
(desplazamiento angular 6)

Velocidad o Velocidad
angular

Carga q

Corriente i

EJEMPLO 9

Considere el siguiente sistema mecanico y el sistema eléctri-
co que se muestran a continuacion:

[~ VW

k B

Mo —] eC_' 1 e~

1o

Fig. 48. Sistema analogos del Ejemplo 9.

La ecuacion para el sistema mecanico es la siguiente:

d’x dx
mﬁ+ﬁﬁ+xk:f(t)
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En tanto la ecuacion del sistema eléctrico es:

L d’q R dqg q
—+R—+—=¢
dt? dt C

Obsérvese que si comparamos las dos ecuaciones diferen-
ciales antes descritas para los sistemas eléctrico y mecanico,
notamos que estas tienen las mismas caracteristicas matema-
ticas, por lo tanto concluimos que estos sistemas describen un

comportamiento analogo.
Analogia fuerza-corriente

Sistemas mecanicos Sistemas eléctricos

Fuerza (Par T) Corriente i

Masa (m) (Momento de Capacitancia C

inercia J
Coeficiente de friccién viscosa Reciproco de la
B Resistencia 1/R

Reciproco de la

Constante del resorte K . .
inductancia 1/L

Desplazamiento x Acoplamiento por flujo
(desplazamiento angular 6) magnético ¢
Velocidad o Velocidad angular Voltaje e
EjEMPLO 10

Consideremos el mismo sistema mecanico del Ejemplo 9, el
sistema eléctrico mostrado a continuacion:

12 Ic

ICD e §R EL

Fig. 49. Sistema eléctrico para el Ejemplo 10.

AY|
I
D)
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La ecuacion del circuito,

da °

El flujo ¢ esta relacionado con el voltaje mediante la ecua-
cion:

dp _ .
e e (66)

sabiendo que i, = % [ edt, i = C%

la ecuacidn circuital puede escribirse en funcion del flujo:

d*¢ . 1 d¢ :
c——= +—¢=
¢ Rdt L ¢ '
Ahora bien la ecuacién del sistema mecanico del ejemplo an-
terior es:

d*x dx
m¥+ﬂ +xk = f(t)

Encontramos que los dos sistemas son analogos.

Veamos ahora como usar estas analogias en la solucién de
sistemas mecanicos, basandonos en los conceptos desarrolla-
dos anteriormente, para la construccién de una red mecanica o
modelo eléctrico equivalente, para ello utilizaremos un ejemplo
sencillo que ha continuacidn ilustramos.

EjEMPLO 11

Dibuje el modelo eléctrico equivalente o red mecanica del
sistema mecanico mostrado:
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Para dibujar una red mecdnica o analogia eléctrica, el pri-
mer paso es ubicar los desplazamientos x, y x, como nodos de
referencia del circuito, todos los elementos de esta red deben
ser conectados entre estos puntos. Como segundo paso se debe
cumplir que sobre estos nodos la suma de todas las fuerzas
debe ser igual a cero, la cual es analoga a la Ley de Kirchoff de
corriente. Veamos cémo queda la red mecanica, la cual repre-

k

1

A M

OO\

—>

AN

b,

Fig. 49. Sistema eléctrico para el Ejemplo 11.

senta el modelo eléctrico equivalente.

F(t)

Sistema de control de nivel de liquido

q

H

5, 1]

LI==I 8

1

=S LA

=B

Fig. 51. Modelo eléctrico equivalente al sistema mecanico.

0% Tanque 1

Tanque 2
o NN R, )
SoTTeeN >|< M
ql qZ
A A

2

Fig. 52. Sistema de tanques con interaccion.
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Nomenclatura:
q: Caudal.
H: Nivel.
R: Restriccion de valvulas.
A: Area de los Tanques.
Donde las ecuaciones quedan expresadas como:

dh
1d_t1 = qo - ql (67)
dh
Azd_tz =4, 4, (68)
donde,
h -h h
GETR =R

La analogia eléctrica queda expresada como:
q < Corriente
h & Voltaje
A & Capacitancia
R < Resistencia

El modelo eléctrico equivalente es:

LR
+ +
q0<> H7RA, H,A, § R,
e

Fig. 53. Modelo eléctrico equivalente para el sistema de control de nivel.
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Sistema de transmision de correa

En la Figura n® 54 se muestra un sistema usado cominmente
en una computadora para mover lateralmente el dispositivo de
impresion, estd compuesta por transmision de correa, el dispo-
sitivo de impresora puede ser una impresora laser, impresora
de bola o térmica.

Correa @
oEmisor de luz

0 . d aas
Dispositivo Polea
Motor CC de impresion
y(6)
» Sensor Posicion del
Controlador [« X .
Voltaje del de luz dispositivo de
motor impresion

Fig. 54. Impresora por transmision de correa.

En la Figura n° 54 muestra el modelo propuesto de un sis-
tema de transmision por correa, este modelo supone una cons-
tante de muelle k, el radio de la polea es r, la rotaciéon angular
del eje del motor 6 y la rotacién angular de la polea de mano
derecha es 6 . La masa del dispositivo de impresiéon m y su po-
sicion es y(tf; el sensor de luz se utiliza para medir y; la salida
del sensor es un voltaje V,; V, = k, y; el controlador proporciona
un voltaje de salida V,; V, esta en funcion de V. El voltaje V, se
conecta a la excitaciéon del motor.

Se supondra que se puede utilizar una relacién lineal:

av,
V1: - kZE-F k3 Vl

y se utilizard k, = 0, 1, k, = 0, la inercia del motor y la polea es ]
=] ot ]polea, la inductancia del campo es despreciable, a con-

tinuacion procedemos a describir las ecuaciones dindmicas del
sistema, obsérvese que y = ré , por lo tanto la tension:

T, = k(r@ - er) = k(r@ —y)
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A ©)

>y

Motor

Controlador] Sensor

1% _ <
v, =-k 1| vl—k1y~

Fig. 55. Modelo para la impresora de transmisién de correa.

La tension T,:

T2=(y—rt9)

La tension neta en la masa m:

2
T -T,= m%
Luego,
T, - T2=k(r0—y) - (y—r@) =2k(r0—y)
Ahora bien,
i= FZ y el troqué del motor,
T =k % v,

El motor proporciona el par de transmisién de las correas
mas las perturbaciones no deseadas.

T =T+T,
De donde,

a0 do
T=] —+B—+r(T +T
r ﬁdt (T,+7.)



136 Capitulo 4. Modelos matemdticas de sistemas fisicos.

T_k'"V ——k dV V

m R Z a7
k d

T =-kk “n @

m 2 R dt

Despejando las variables:

d2t9_ kkk dy B db Zkre 2kr T,

+—y+ 2

d2 " JR dt J dt ] Ji Ji
dy 2kr 2k

- = - — y

dt? m m

Haciendo cambios de variables, para construir matriz de es-
tado, tenemos:

V=X
X, =X,
0=z
z,=2,
~ 2kr  2kr
N T X 4
k k.k B 2kr? 2kr T,
Z,=——=2 X, - —2Z,~ Z+ —Xx -—

I I B A

- - 0 1 0 0 | 4 - -
X 2kr 2kr X 0

: —— 0 — 0 0

X, m m X,

2= + T,
z, 0 0 0 1 z, 2

:, 2k kjok, 2k B | T
R J J A
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Transformaciéon de modelos matemadticos usando
Matlab

Si conocemos la funcién de transferencia de un sistema, po-
demos determinar la matriz de estado a cual pertenece dicha

y(s)

relacion =——< = G(s), veamos un ejemplo sencillo.

x(s)

EjEMPLO 11

s
Sea la funcidn de transferencia: G(s) =

$3+ 145 + 565 + 150

Determine la matriz de estado usando MATLAB.
Se escribe en la Herramienta MATLAB:
>num=[0 0 1 0];

>den=[1 14 56 160];

Representan los coeficientes de los polinomios numerador y
denominador respectivamente, luego,

> [A,B,C,D] =tf2ss(num,den)
El resultado es el siguiente:

A=
-14 -56 -160
11 0 0
1 1 0
B=
1
0
0
C=
0 1 0
D=
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EjJEMPLO 12
Sea la matriz de estado:

%, 0 1 0 [[x 0 X,
0=l 1 0 1 |[X[+] 25 [u(®) y=[100]| X,
% |5 25 -5 || %] 7120 %3

¥(s)
u(s)
Se escribe en la herramienta Matlab:
>A=[0 1 0; 0 0 1; -5 -25 -5];
>B=[0; 25; -120]

>C=[1 0 0]

>D:[O];

>[num,den]=ssth(A,B,C,D)

determine la funcion de transferencia usando Matlab.

El resultado se muestra a continuacion;

num=
0.0000 0.0000 -25.0000 -245.0000
den=
1.0000 5.0000 25.0000 5.0000
Luego;

Printsys=(num,den)

La corrida mostrara:

num 255+ 5
den s*+5s*+25s5+5
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PROBLEMAS

1. Determine la matriz de estado y la ganancia del sistema
para los sistemas eléctricos dados a continuacién:

1.1

MWy M

<
(9
N
N
ol
)
N
o)
)

1.2
R, R,
MW MV
e —_—
v CD c | L E
1.3




140 Capitulo 4. Modelos matemdticas de sistemas fisicos.

1.4

1.5

1.6
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2. Determine la matriz de estado y la ganancia del sistema
en los sistemas mecanicos y electromecanicos mostrados a
continuacion.

2.2
Xl XZ
— —
B,
. ] 2

M1 k, M2
AR AR '
B, B,

2.3
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2.6 c

L/

-~




Ali José Carrillo Paz 143

H Tanque 2

L NN Rl 2

AP >|< H—ooo
q

3. Determine el circuito equivalente o analogia eléctrica de los
siguientes sistemas mecanicos mostrados.

3.1
B3
_|]—
k3 k4
M, —MA——] ¥, —MA——] 1,
17 2T
f(t) — VW — VW
oo & Yol N 00
v~ \é
1 2
3.2

f(t)—>
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3.3

—>
a, b

A, Tanquel i Tanque 2
_>vh —>
"1
q, ,
Tuberia 3
Rl * R3
q, —» q, —P
Tuberia 1 Tuberia 2
3.4
B
/\@917 /442[ 9(1
Rl TI7T77T7 47 T
/) Sujetador B,
<Correas no elasticas
Rl = RZ
Eje defor- Pared
) mable
RZ

™M
V) K

4. Escriba las ecuaciones de estado de los sistemas mostrados
a continuacion, y luego construya el grafico de flujo de sefial,
usando la nomenclatura indicada.

4.1

Engra-
najes
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4.2
0, 6,
- N B
CARGA
f / Eje )(
T,  flexible
o ©, 0,
(a)
o o o——o0 oO——0 oO——0
6 6 Xg X3 XZ XZ .
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10.

11.

12.

13.

14.

15.
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CAPITULO 5

ANALISIS DE SISTEMAS DE CONTROL EN EL
DOMINIO DEL TIEMPO

Andlisis de variables de estado, respuesta
transistoria y estacionaria

Introduccion

Un sistema moderno complejo de muchas entradas y muchas
salidas que se relacionan entre si, resulta ser muy complicado
su estudio, razén por la cual para el andlisis de los sistemas de
este tipo es necesario disminuir la complejidad de las expresio-
nes matematicas, ademas se debe recurrir a computadoras que
realicen los calculos. El enfoque de variable de estados es mas
conveniente desde este punto de vista.

Mientras la teoria de control convencional se basa en la rela-
cién entrada-salida o funcion de transferencia, la teoria de con-
trol moderna de control se basa en la descripcion de un siste-
ma en términos de n ecuaciones diferenciales de primer orden
como lo vimos en el capitulo anterior, en el cual cada sistema se
expresaba en forma de matriz de estado, en este capitulo abor-
daremos los diversos métodos de solucion de las matrices de
estado para obtener la respuesta del sistema en el tiempo y el
analisis de la controlabilidad y la observabilidad de los siste-
mas de control.

Ahora bien en el capitulo anterior se planteé el primer paso
para analizar un sistema de control al obtener un modelo ma-
tematico del mismo y su representacion de estado. Una vez
obtenido, existen varios métodos para el analisis del compor-
tamiento del sistema, frecuentemente es deseable obtener la
respuesta en el tiempo de las variables de estado y asi exami-
nar el funcionamiento de éste, otro método a considerar en el
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analisis del comportamiento del sistema es el uso de sefiales de
prueba, con estas sefiales de prueba es posible realizar con fa-
cilidad analisis matematico y experimental de sistemas de con-
trol, éstas son funciones muy simples. Para ello analizaremos
la respuesta en el tiempo de un sistema de control compuesto
en dos partes, la respuesta transitoria y la respuesta de estado
estacionario donde veremos un detallado comportamiento de
los sistemas de control.

Meétodos de solucion de la ecuacion de variables de es-
tado

Como vimos en el Capitulo 3 la forma matricial de la ecua-
cion de estado esta definida por:

x=Ax+Bu(t), y=Cx x(x,)=D
Método de solucion matriz de transicion de estado

La respuesta transitoria puede obtenerse facilmente calcu-
lando la solucion de la ecuacién diferencial de variable de esta-
do, tomando la transformada de Laplace a la ecuacién de estado
obtenemos:

sx(s) - x(0) = Ax(s) + Bu(s) (69)
Por tanto despejando x(s):

sx(s) - Ax(s) = x(O) + BU(S)

(SI - A)x (s) = X(O) + BU(s)

x(s) = (s1- A)*[x(0) + BU(s)] (70)

Calculando la transformada inversa de la Laplace, a la ecua-
cion (70) da como resultado:

t
— pAt (t-1)
x(t) e X(O) +(J)- e Bu(r)dr, (71)
donde la funcién exponencial se define como:
A%t At
M=+ At+ — +u. + — (72)

2! n!
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La ecuacion (71) es la solucion de la ecuacion de estado, por
lo tanto si usamos la ecuacion (70):

x(s) =[s1 - A" x(0) + [sI - A]"* Bu(s) (62)
si sacamos factor comun obtenemos:

¢(s) = [s1 - 4], (74)

es la transformada de Laplace de la funciéon q,')(t) = e’ esta fun-
cion matricial describe la respuesta forzada del sistema y se co-
noce como matriz de transicién de estado, por tanto la ecuaciéon

puede escribirse:
t

x(t) = q.')(t)x (0) + E)[ gb(t - T) Bu(r)dr, (75)

la solucién del sistema no forzado cuando u(t) =0, sencillamen-
te es x(t) = (;b(t)x (0) este caso se llama Homogéneo.

EJEMPLO 1
Sea la matriz de estado o ecuacién de estado:

O 1 X1 0
|:_2 _3] X g u(e), u(e)=1,t>0

las condiciones iniciales son cero.
Primer paso: identificar A,B y determinar [sl - A]’l.

1 0 o 1]|s -1
[SI_A]zs[o 1]_[—2 —3]{2 s+3}

donde:

1 s+3 1
[sI- At =—F—
s2+3s+2 | 2 s

Segundo paso: determinar ¢(t).

La matriz de transicion de estado puede obtenerse calculan-
do la transformada inversa de Laplace de [sI - A]‘l, por lo cual
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tenemos:
2et— g2t et—e
PO=| it e s 20
—2et+2et —et+2e*
Tercer paso: determinar x(¢) usando la formula (75).
2e-(t-7) — g2(t-7) et — g2(t-7) 0

—2e-(t0) 4 2p-2tD) —e D) 4 20260 || 1 dr,

x(0)=]

El primer término se anula porque las condiciones iniciales
son cero, luego de realizar los productos indicados y calcular la
integral sencilla obtenemos:

0.5-et+0.5e%
X1(t) = et— e—Zt t= 0’

esto implica
xl(t) =0.5-¢et+0.5¢e% xz(t) —et-eg%
respectivamente.

Método de solucién de matriz A diagonalizada

El caso particular cuando la matriz A solo tiene elementos
en la diagonal principal, entonces podemos aplicar la ecuacién
(71) de la siguiente manera:

[ 4,0 0.0 |
0 a,, (0 - 0
t
A= 00 Ay 0 =>X(t) = et X(O) + b[e“(f‘r) Bu(T)dt,
(O . 0
(O a,,

Esta ecuacion se podra aplicar siempre y cuando la matriz A
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esté diagonalizada.

EJEMPLO 2
Sea la matriz de estado, determine la solucién del sistema.

)‘;1 -1 0 X, 2 5
= + t x(0) =
Aplicamos directamente la formula para calcular xl(t), xz(t).

t t
x,(t) =5et+ | 2e2tD dr=5et+2e* [erdr=5et + 2
0 0

-2e"> xl(t) =3et+2

t t 3
x(t)=et+]3eDdr=e+3e e dr=e?+ 5
0 0

-2t
—%e‘“:xz(t) — +%

Método de solucion de la transformada de Laplace

Si tomamos la ecuacién (70), podemos establecer que la so-
lucion de la ecuacién estado estard dada por; x(t) =L1 [(SI -
A)’1 (X(O) + Bu(s))], donde I es la matriz unidad y ¢>(s) = (SI
- A)'1 es la matriz de transicion de estado.

EJEMPLO 3

Sea la matriz de estado:

[:]:[_(1’ —?5,] [il] +[(1)] u(®) x(0) =[:] u(t)=1,t20

Determine la solucién del sistema.

Primer paso: hallar [sI - A] .
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s VHS S8

. _
[s/- 4] = ——— s+5 6
s2+5s+6| -1 s

Segundo paso: hallar [x(0) + Bu(s)].

1] [o] 1 1
[X(O)+Bu(s)]= ) + L ?= 2s+1

Tercer paso: hallar x(s).

s?+17s+6
1 [s+5 6 251+1 | s(s+2)(s+3)
x(s)= st +5s+6| -1 s || T — - 2s

G+2)(+3)

) s2+17s+6 A B C
= =—+ -
e s(s+2)(s+3) s (s+2) (s+3)

2s A B
x,(s) = (s+2)(s+3) ) (s+2) * (s+3)

Cuarto paso: hallar xl(t), xz(t), aplicando la transformada

inversa de Laplace a x,(s), x,(s).
Luego de aplicar el método de fracciones parciales para de-

terminar las constantes y usar la transformad inversa de Lapla-

ce tenemos:
x,(s)=1+12e% - 12
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x,(s) = —4e + 6e-*

Método de diagonalizacion o vectores caracteristicos

El método consiste en la aplicaciéon de una transformacion
lineal, obtener una ecuacion de estado con matriz A diagonali-
zada y resolver la nueva ecuacion estado por el método de ma-
triz A diagonalizada analizado en este capitulo. Seguidamente,
realizar la transformacion inversa para encontrar la solucién de
la ecuacion original, para ello cambiamos el vector de estado x
por zy la transformacidn lineal sera V.

x=Vz 'y x=Vz
Sustituyendo en la ecuacion:
x = Ax + Bu(t)
obtenemos,

Vz = AVx + Bu(t)
Despejando a z:
z=V"'AVz+ V"' Bu(t) = Az + Eu(¢t) (76)

Se puede apreciar que esta transformacidn lineal aplicada al
vector x, cambia el sistema original con variables, x,, x,, XX A
un nuevo sistema con variables de estado x,, x,, x,,...x , la solu-
cion de este nuevo sistema se consigue muy facilmente usando
el método descrito en la pagina 154 y siguientes, luego pode-
mos aplicar la transformacion lineal a esas variable x = Vz, para
encontrar la solucidn de las variables originales. Para efectos de
encontrar el vector V, debemos utilizar los procedimientos usa-
dos en ingenieria para determinar el valor de A de un sistema de
ecuaciones homogéneo.

(/\ - an) ST J—— a, U=0
—a,U +(A-a,) U, a,U =0
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Para una solucién no trivial, la forma vectorial se tiene:
(Ar-4)v=0 (77)

Para V tenga solucion no trivial serd necesario y suficiente
que cumpla,

Det(AI-A)V=0 (78)

Se llama polinomio caracteristico de A y A se le llaman valo-
res caracteristicos que satisface la ecuacion:

[Ar-4]v=0 (79)
Se le denomina Vector caracteristico.

EJEMPLO 4
Sea la matriz de estado:

X 0 1 X 0 1

1 1

- u(®), (0=

X, -2 -3 X, 1 1
Determine la solucién del sistema.
Primer paso: determinar los valores caracteristicos.

Det(AI-A)V =De =2+31+2=(A+1)(1+2)=0

A -
2 A+3
De donde se obtiene:

A =-1

A, =-2
Segundo paso: hallar el vector caracteristico V.
Para A, = -1, usamos [7(1 —A]V= 0.

A -1 Vi -1 1Y,
= = 0’ V. ==V
2 A+3| |V 2 2|lv 1 12

12 12

para ello tomamos un valor arbitrario, V,, =-1,= V,, =1,enton-
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ces,

el vector V, =
-1

Andalogamente procedemos para A, =-2.

A =1 ||Vl [-2 -1V
= =0, sz =" 2‘/21
2 A+3| |V 2 1 ’

22

22

para ello tomamos un valor arbitrario para
vV,=1 = V,=-2
Entonces en vector V queda definido:

)

podemos calcular facilmente,

. 2 1
-1 -1

Tercer paso: diagonalizar la matriz de estado.
Usamos la ecuacién (65) nos queda:

z{ 2 1o 1[1 1lz| [2 1]t
. = +
4| |1 -1 =31 -2 || -1 -1 ]|

TR OH K B

Nos queda:
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z, 0 -2]|z,

Cuarto paso: determinar la solucion de la matriz diagonali-

zada zl(t), Zz(t)
Aplicamos el método desarrollado el Método de solucién
de la transformada de Laplace (pag. 153 y siguientes).

t
x,(6)=3et+ [ etDdr=3e"+1e7=1+2¢
0

x(t) = -2¢7+ [ (-ex)ar

-2t
IR U

2 2 2 2

Quinto paso: hallar la solucién de la matriz original.

X, 1 1 1+ 2e? l +Ze‘f-§ e
= 1 3 = 2
X, -1 =2 _ 2 _ 2 g2
2 2 -2et + 3e2

la solucién queda definida:

1
x,(t) = 2 +2et - ; e

x,(t) = -2et+3e

Método de solucion interpolacion de Sylvester
Para aplicar el método de interpolacién de Sylvestre para cal-
cular e, es necesario enunciar el teorema de Cayley-Hamilton.
Teorema de Cayley-Hamilton
Sea una matriz nxn y su ecuacion caracteristica, A" + a, A"*
+...+a  A+a_ =0lamatriz A satisface su propia ecuacion ca-
racteristica A" + a, A" +........ a A+a I=0.
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Ahora bien utilizando la férmula de interpolacién de Sylves-
ter, se demuestra que e se obtiene la ecuacion determinante
siguiente:

1A, Ald™t et
1A, A end,mt et
=0 (80)
1T A, A et
I A Au.. AmL et
Luego al despejar e**nos queda:
e=aql+aA+ahi..a A" (81)

Para determinar los valores de @, k = 1, 2, 3, 4....m-1, se
debe resolver el sistema de m ecuaciones para a, (t) de la forma

aO (t) + a1(t)ll+ az(t)llz Foriiieee am_l(t) Alm—l = eAlf (82)
aO (t) + al(t)lz + az(t)lzz T am_l(t) Alm_l = eAzf
aO (t) + al(t)A3 + az(t)A; Foereen am—l(t) A3m—1 = eA3t

EJEMPLO 5
Sea la matriz de estado.

).(1 0 1 X, 0 0
= , 0)=
X 0 -2 X ' 1 'u(t) X( ) 0

2 2

Determine la solucion del sistema.
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Primer paso: determinar los valores caracteristicos.

A -1
Det[/ll - A] =0, Det = 0 = la ecuacién caracte-
0 A+2

ristica nos queda:
AA+2)=0=>21,=0,1,=-2

Segundo paso: hallar ao(t), al(t) porque el sistema es 2x2.
Usando la ecuacion (71):

ao(t) + Alal(t)= eMt
a,(t) + A,a,(t)= et
Sustituyendo los valores de A, = 0, A,=-2 tenemos:
ao(t) =1
ao(t) + Azaz(t) =e?% ao(t) - Zaz(t) =e#
Resolviendo el sistema obtenemos:
a(0)=1,(0) =—(1-e)

Tercer paso: hallar e,
Usando la ecuacién (81), hallamos e*,

1
e=aq(t)+a(t)A=1+ 5(1 -e?)A

= = (1)

1
1 7 (1 - e‘Zt)
2t

0 e

Cuarto paso: luego de hallar ¢(t), hallamos la solucién del
sistema xl(t), xz(t).

Para hallar la solucion del sistema se debe usar la ecuacion
(75).



x(t)=.|f 1
°fo

Nos queda:

% (1 _ e—Z(t—‘L’))
e—Z(t—T)

o,

De donde,

x(6) = -

N|H

1
4-

xl(t) =1-e%

% (1 _ e—z(t—r))
e—Z(t—r)
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0
1

dt

dt

Controlabilidad y observabilidad

Controlabilidad: se dice que un proceso es completamente
controlable si cada variable de estado del proceso a ser con-
trolado alcanza un objetivo en un intervalo finito de tiempo
por una seflal de control sin restricciones u(t). El significado
de controlabilidad de un sistema establece que si el sistema es

controlable en un tiempo

t,para un estado inicial x(to) y si se

puede transferir este estado a cualquier otro estado x(tl) me-
diante un vector de control sin restricciones para un intervalo
finito, entonces podemos decir que el sistema es controlable.
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Considérese un sistema lineal invariante en el tiempo des-
crito por las siguientes ecuaciones de estado:

x=Ax+ Bu(t)

y(t) = Cx(t) + Du(x)

Donde 4, B, Cy D son matrices de coeficientes con dimensio-
nes apropiadas.

Teorema de controlabilidad

(83)

Consideremos la solucion de la ecuacion de estado:
t
x(t) = et X(O) + _feA(f‘T)Bu(T)dr
0

Si aplicamos la definicion de controlabilidad del estado re-
cién establecida, se tiene que:

x(t) =" x(0) + [ et Bu(r)dr =0
Y despejando X(O):

x(0) =- Of e*Bu(t)dr
Podemos escribir e como:

et = "2_:: ak(r)A"

k=

Como se ha visto en las secciones anteriores se obtiene:
e

x(0) = —Zl A¥B 6|Elak(r)u(r)dr

k=0

Y se define,

J @ (Ou(dc=p,

Entonces,

x(0) = -5 A4'Bp,
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Si el sistema es completamente controlable entonces debe
satisfacer:

x(0)=[B AB A?B  A’B..A""B|

De este andlisis se puede concluir la condicién de controlabi-
lidad para el sistema descrito por la ecuacién (83) es completa-
mente controlable si y sélo si los vectores B, AB....... A"™! B, sean
linealmente independientes y la matriz de controlabilidad S es
de rango es n:

S=[B AB A’B A°B....A"'B| (84)

Finalmente afirmamos que si la matriz S (matriz de contro-
labilidad) no es singular entonces el sistema es controlable.

EJEMPLO 6
Sea el sistema descrito:

X, 1 1

X, 0 0 0
x| 12 -1|lx +1“(t)’x()_0

2 2

Para este caso:

0 1

S=[B AB]= L1

)

para probar que la matriz S no es singular bastara con que su
determinante sea diferente de cero, Det(S);t 0 entonces si cal-
culamos el determinante del sistema dado:



164 Capitulo 5. Andlisis de sistemas de control en el dominio del tiempo.

Det(z) 11 =0-2=-2=Det(S)#0,

podemos concluir que el sistema es controlable.

Controlabilidad a la salida de un sistema

Para disefiar un sistema de control se puede necesitar con-
trolar la salida en lugar del estado del sistema, la controlabili-
dad de estado no es condicion necesaria ni suficiente para con-
trolar la salida del sistema.

Para sistemas descritos por la ecuacién (83), se puede de-
mostrar que la condicién de controlabilidad completa a la sa-
lida del sistema es posible sélo si se puede construir el vector
de control que transfiera la salida inicial y(to) a cualquier salida
finaly(t) en un intervalo de tiempo finito, el sistema es comple-
tamente controlable a la salida si la matriz [CB CAB CA’B.....
CA™B D] es de rango m, matriz no singular, la demostracién
puede hacerse haciendo las mismas consideraciones para la
controlabilidad total y se deja al lector como ejercicio.

Observabilidad: se dice que un sistema es completamente
observable si el estado x(to) se determina a partir de la obser-
vaciéon dey(t)durante un intervalo finito ¢, < t<t,, el sistema es
completamente observable si todas las transiciones de estado
afectan eventualmente a todos y cada una de las variables de
salidas o al vector de salida.

Teorema de observabilidad

Para el sistema descrito por la ecuacién (83) cuya soluciéon
es:

x(t) =ex(0) + J'teA(H)Bu(T)dT
0
Y la salida es:
t
y(t) = Ce*x(0) + C (,)f e9Bu(7)dt + DU(t)

Si consideramos el vector de salida para sistemas homogé-
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neos para hacer el analisis mas sencillo cuya salida es:

y(t) = Ce* x(0)
Se tiene que:
n-1
e =3 a, (7)Ax
Se obtiene:

y(t) = —:Z: a, (t)CA*x(0)

El sistema es completamente observable si cumple con la
condicién necesaria y suficiente para la matriz de observabili-
dad V, cuyo rango es n, no es singular y tiene la siguiente forma:

C
CA
CA
v=| CA® (85)

CAn—l

También puede escribirse la ecuacién (74).
V=|[Ct Ct A CH(A)™]
Entonces se dice que el sistema es totalmente observable si
la matriz V no es singular, implica que el Det(V)= 0.

EjEMPLO 7
Sea el sistema descrito:

: _ 3 0
L O ko, v=1 o] x(0)
X 1 0

2 2
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Determine si es observable.

Entonces,
¢l [1
v=| |= 0 = Det(V)
CAl -2 ©
10
=Det| _, O=0—0=a0a00=0

podemos concluir que el sistema no es observable, la matriz V
es singular.

Andlisis de la respuesta transitoria y estacionaria

Una vez conocida la respuesta en el tiempo de un sistema
(cualquier sistema) por los métodos estudiados anteriormente,
determinamos que la misma esta compuesta por dos partes: la
respuesta transitoria y la respuesta de estado estacionario, por
lo tanto, la respuesta se puede escribir como:

y(6) =y, (6) +y,(t) (86)

La respuesta transitoria ytr(t) se define como la parte de la

respuesta en el tiempo que va desde el estado inicial hasta un

estado final en el que tiende a cero cuando ha pasado un tiempo
muy largo. De manera que y, (¢) tiene la propiedad:

Lim y,(t)=0 (87)
t—0o0

Larespuesta de estado estacionario esla parte de la respues-
ta total del sistema que permanece o se mantiene en el tiempo,
luego que la respuesta transitoria ha desaparecido. De manera
que la respuesta de estado estacionaria puede variar s6lo sobre
un patron fijo.

El control de la respuesta transitoria es necesariamente im-
portante, porque significa que es la parte del comportamiento
dinamico del sistema y representa la desviacién entre la res-
puesta de salida y la entrada o la respuesta deseada, antes que
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el estado estable sea alcanzado, ésta debe ser inmediatamente
controlada porque puede causar problemas o afectar negativa-
mente el comportamiento del sistema.

La respuesta de estado estacionario de un sistema de con-
trol es también muy importante, ésta indica el estado de equi-
librio del sistema cuando el tiempo se hace muy largo. Cuando
un sistema de control opera, la respuesta estacionaria es com-
parada con una sefial de referencia o sefnal deseada. En general,
silarespuesta de estado estacionaria de la salida del sistema no
concuerda con la seiial de referencia o con la sefial deseada, el
sistema expresa que tiene un error de estado estacionario.

Error de estado estacionario

Como mencionamos en la explicacion de la respuesta de es-
tado estacionario, la diferencia que existe entre la sefal de sali-
day la sefial de referencia lo definimos como el error de estado
estacionario, por esta razén la respuesta de estado estacionario
rara vez concuerda con la sefial de referencia o deseada. Por
lo tanto, los errores de estado estacionario en los sistemas de
control son casi inevitables, éste es problema a considerar en
el disefio de los sistemas de control, uno de los objetivos es re-
ducir el error de estado estacionario al minimo o mantenerlo
en un valor tolerable, al mismo tiempo la respuesta transitoria
debe satisfacer el conjunto de especificaciones.

Los requerimientos de precision en los sistemas de control
dependen en gran extension de los objetivos del sistema de
control.

El andlisis de errores de estado estacionario es ilustrado en
Figura n® 56 donde se muestra el diagrama de bloque de un sis-
tema de control realimentado (Lazo cerrado) donde r(t) es la
entrada del sistema yy(t) es la salida del sistema. El error del
sistema queda definido como:

e(t) =r(t) - »(t) (88)
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R(s) E(s) Y(i)

- 6(s)

H (s) <

Fig. 56. Modelo de sistema de control realimentado.

El error de estado estacionario es definido como:

e, =Lim e(t) (89)

t—00

Usando el teorema de valor final de transformada de la La-
place, la ecuacién (89) puede ser escrita como:

e, =Lim e(t) = Lim sE(s) (90)
t—00 s=0

Ahora analizaremos la Figura n° 56 para determinar la fun-
cién error E(s), con la cual podemos determinar el error en
funcién de los elementos del modelo de sistema de control re-
alimentado en el dominio de s, seguidamente aplicamos la pro-
piedad de la transformada de Laplace usando la ecuacién (90)
la cual detallamos.

Por definicion Y(s) = G(s)E(s) y E(s) = R(s) - H(s)Y(s), si
combinamos las ecuaciones, obtenemos:

LR
Zd.emés R(s) - E(s) = G(s)E(s)H(s), despejando E(s), nos que-
R(s)

B = T )

(91)
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ecuacién general de error,
Entonces el error de estado estacionario queda definido:

__SR(s)
e = Lime(t lesE s L1 92
ime(e) = LimsE(s) = Lim =50 2
Queda muy claro que e _depende de G(s) mas especifica-
mente, podemos mostrar que e, depende del nimero de polos
de G(s) para s = 0, este nimero se conoce como el tipo de siste-
ma de control o sencillamente el tipo.

Calculo del error de estado estacionario para tipos de
sistemas de control

Para realizar el analisis matematico del error de estado es-
tacionario es necesario utilizar sefiales de entrada de prueba
para la respuesta en el tiempo de los sistemas de control, estas
sefiales son pulso unitario ,u(t), rampa t,u(t) y parabdlica:

(0

Cason®°1

Calculo de error de estado estacionario cuando la entrada es
un pulso unitario r(t) = ,u(t) definida como:

1 t20
n®=10 120

Sabemos que la transformada de la Laplace de la entrada

r(t) = ,u(t) es:

1
R(s) = —, entonces usando la ecuacién (92) tenemos:
s

1
S—

_ R(s)

= — - Lim—
ST THG()HG) 0 1+ G)H()
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1 1
Lim =
s-0 1+ G(s)H(s) 1+ Lim G(s)H(s)
-0

Si llamamos k, = Lim G(s)H(s), entonces el error de estado
. . —0
estacionario es: :

1
e =
Ss 1+k
p

La representacion tipica cuando la entrada es un pulso uni-
tario y(t)cuando kp es finita y diferente de cero se muestra en
la Figura n° 57.

b rO)=k()
AN
N4

— >l

e
SS 1 + k
\y(t) 14

Fig. 57. Error tipico de estado estacionario para r(t) = u(t).

Cuando en un sistema tiene una sefial de entrada pulso uni-
tario, si se puede determinar el valor de la constante kp y éstaes
diferente de cero, entonces para las entradas de prueba rampa
r(t) = tu(t) y parabdlica:

{0 =2 u(0),

el error de estado estacionario e_ = 0, por lo tanto podemos
resumir que el error de estado estacionario para una entrada
pulso unitario tiene la siguiente caracteristica:
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Sistema TIPOO e =
SS 1 + kp

Sistema TIPO 1 o Mayores e _=0
Cason°2
Calculo de error de estado estacionario cuando la entrada es
una rampa r(t) = t,u(t).
Analogamente al caso anterior, la transformada de Laplace
de la entrada es:

R(s) = —, entonces usando la ecuacion (81) tenemos:
s

1 1

s? s

¢, = Lim 1+G(s)H(s) 1+ G(s)H(s)

’

1 1
= Lim = )
=0 s+G(s)H(s) Lim G(s)H(s)
s—0

si hacemos

k,= Lim G(s)H(s)
s—0
Y el error de estado estacionario es:

1
eSS =;
v
La representacion tipica cuando la entrada es una rampa
ty(t)cuando k es finita y diferente de cero se muestra en la
Figura n° 58.
Analogamente al primer caso, concluimos que si en un sis-
tema donde la sefial de entrada es una rampa, podemos calcu-
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r(t) =) !

\/

Fig. 58. Error tipico de estado estacionario para r(t) = u(t).

lar k y ésta es diferente de cero, entonces para las entradas de
prueba rampa r(t) = u(t) y parabdlica:

OO}

el error de estado estacionario e = w0y e = 0 respectivamente,
entonces el error de estado estacionario tiene la siguiente ca-
racteristica:

Sistema TIPO 0 e =00

1

Sistema TIPO 1 e :;

Sistema TIPO 2 e =0
Cason°3

Calculo de error de estado estacionario cuando la entrada es
una parabola:



Ali José Carrillo Paz 173

r(t) = %2 u(t).

Siguiendo el procedimiento, la transformada de Laplace:

{0)=2 u(0),

entonces usando la ecuacién (92) tenemos:

1 1
y T y s
T 0 THG)H(s) o0 1+ G(s)H(s)
1
= Li

S0 s 452 G(s)H(s)  Lim s*G(s)H(s)
s—0

Si hacemos k, = Lim s? G(s)H(s) y el error de estado estacio-
nario es: 520

1
e =—
Ss k

v

La representacion tipica cuando la entrada es una parabola:
L—Z
r(t) = 7 u(t).

cuando k_ es finita y diferente de cero se muestra en la Figura
n° 59.

{0 =2 u(0)

Luego de analizar este caso, concluimos que si en un sistema
donde la sefial de entrada es una parabola, podemos calcular k,
y ésta es diferente de cero, entonces para las entradas de prue-
ba rampa r(t) = y(t) y parabdlica r(t) = ,u(t) el error de estado
estacionario es para ambos casos e = 0o entonces el error de
estado estacionario tiene la siguiente caracteristica:

Sistema TIPO 0 e =00
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/O
ers =
k

A ;

t

HO=—u()

y(©)

tZ

Fig. 59. Error tipico de estado estacionario para r(t) = E ,u(t).

Sistema TIPO 1 e

SSs

00
1
Sistema TIPO 2 e =;

a

La siguiente Tabla n° 2 resume los errores de estado estacio-
nario para sefiales de entradas pulso, rampa y parabola.

Tabla 2
e e e
Tipo de Entrs.'flda Entrs.'flda Entlf.sada
. Constantes de error . . .
sistema de seiial de seiial sefal
pulso rampa parabdlica
1
0 k 0 0 00 00
P 1+k
a
1 0 k 0 0 — 00
kV
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Tabla 2. (continuacién)

. SS SS SS
Tipo de Constantes de error Entra~da Entra~da Entl:ada
sistema de sefial de sefial seial

pulso rampa parabdlica
1
2 0 0 k, 0 0 e
ka
3 0 0 00 0 0 0
EJEMPLO 8

Determine las constantes de error estado estacionario para
las sefiales de prueba, pulso, rampa y parabola:

L)
2

para sistema de control realimentado cuyas funciones de trans-
ferencias de lazo abierto son dadas a continuacidn:

G(s) =y  H(9)=

(52 +s+2)

(s+1)

Primer paso: hallar las constantes k ” k,yk.

1 1
k = leG(s)H(s) L10 (S oy +2) (s +1)—5

k,= LimsG(s)H(s) = k,= 0
50

k, = Lims?G(s)H(s) = k,= 0
5—=0
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Segundo paso: calcular los errores de estado estacionario.

Sistema Tipo O ess=  _—__

1
Sistema Tipo1l e = 6 =00

Sistema Tipo 2 e =—=00

Ahora que sabemos calcular los errores sobre las respuestas
de salida de un sistema, nos abocaremos a analizar la respuesta
en el tiempo de sistemas de primer y segundo orden observan-
do su desempeiio y caracteristicas de comportamiento.

Respuesta en el tiempo de sistemas de primer orden

Un sistema de primer orden tiene una relaciéon de entrada-
salida (ganancia) siguiente:

r(is) 1
@_ Ts+1

(93)

esto implica que el modelo estandar para este tipo de sistema
tiene la forma mostrada en el diagrama de bloque con reali-
mentacion unitaria en la Figura n° 60.

R() 1 Be
—_— E >

<
<«

Fig. 60. Diagrama de bloque de un sistema de primer orden.
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Si despejamos la salida de la ecuacion (93) obtenemos:

¥(s) =

Ts+1

suponemos las condiciones iniciales cero, conociendo la sefial
de entrada r(t) podemos determinar el comportamiento y res-
puesta en el tiempo del sistema, para explicar este proceso to-
maremos una sefal de prueba conocida, la funcién pulso, aun-
que pudiéramos tomar cualquiera, por simplicidad hacemos
esta eleccion, sea r(t) = y(t), sabemos que:

R(s) = %

entonces,

() ==

S(Ts + 1)

si buscamos la transformada inversa de Laplace de Y(s), tene-
mos:

t
y(t) =1-e r,parat=0
Si aplicamos la definicién de error y usamos la ecuacion (88)
tenemos:

e(t)=r(t)-y(t)=1-(1-e7)=e(t) =e 7 = e_= Lim

t—00

e(t) = Lime'% =0

t—00

Ahora vamos a demostrar que usando la ecuacion (90) nos
da el mismo resultado, aplicamos el teorema de valor final para
determinar el error de estado estacionario:
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1
i s , Ts 0
e = Lims = Lim == =0
B0 1 20 Ts+1 1
1+ —
Ts

Observamos que la respuesta en ambos casos es la misma, la
grafica del comportamiento del sistema en la Figura n® 61.

H{0) = u(e)
~.

y(t) =1- e_%

\

Fig. 61. Grafica de la respuesta en el tiempo.

En conclusién observamos que la respuesta del sistema de-
pende de las caracteristicas de la sefnal de entrada.

Respuesta en el tiempo de sistemas de segundo orden

Un sistema de segundo orden tiene una funcion de transfe-
rencia de la forma:

o) o N
R(s) _sz+2g'a)ns+a)"2' (54)

Esta ecuacion es llamada la forma estandar de la funcion
de transferencia de un sistema de segundo orden, donde ¢ es
definido como la razén de amortiguacién y es adimensional y
w, representa la frecuencia natural del sistema, la Figura n°® 62
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[0 % )
s (s + Zg'wn) g

A

Fig. 62. Modelo de sistema de segundo orden.

muestra el modelo en diagrama de bloques de un sistema de
control en de segundo orden.

La ecuacion caracteristica del modelo de segundo orden la
representa el denominador de la ecuacién (83) igualada a cero:

A(s)=s+2Cw +w?=0 (95)
Para una entrada pulso unitario, donde:
1
R(s)=—,
(5)=-

la respuesta de salida se obtiene de buscar la transformada in-
versa de Laplace a la salida:

OF 2

w,

s(s*+ 26w s+ w?)

el resultado que obtenemos es:

e swnt
y(t)=1——2 sen(w, V1 -¢? t+Cos’1(C) t=20
rerabi OV ) =0

Los efectos de los parametros 'y w_en la respuesta del mo-
delo de segundo ordeny(t) la estudlaremos referidas a las rai-
ces de la ecuacion caracteristica, donde:

5,=~Sw, tjo, (V1-¢?) (97)

Los efectos de la ecuacidn caracteristica en la amortiguaciéon
de un sistema de segundo orden, mientras la razén de amorti-
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guacion varia desde —o0 a 0 la frecuencia natural permanece
constante, la siguiente clasificacion de los sistemas dindmicos
con respecto a los valores de ¢ queda expresado.

Sub-amortiguado:

0<G<1: s,5,=—Cw *jw (V1-¢2) -Sw <0

Criticamente amortiguado:

¢=1 s,s,=-0,

Sobre amortiguado:

¢=1 Sl'szz_gwniwn(vl_gz)

Sin amortiguamiento:
¢=0: s

Negativamente amortiguado:

§<0:  s,5,=-Cw +jo (V1-¢*) -Cw, <0

En aplicaciones practicas, s6lo los sistemas estables son los
que corresponden a ¢ > 0 y éstos son los de interés, tomando
como entrada una sefial pulso unitario mostramos a continua-
cion en la Figura n° 63 la respuesta del sistema en funcién del
tiempo normalizado w t para varios valores de la razon amor-
tiguamiento. Como vemos, la respuesta se hace mas oscilatoria
a medida que decrece §. Cuando ¢ = 1 la respuesta no presenta
sobrepaso, esto quiere decir que y(t) nunca excede al valor de
referencia durante la respuesta transitoria.

1'52 = i]('Un

En muchos casos practicos las caracteristicas de desempefio
deseadas en los sistemas de control se expresan en funciones
en el dominio del tiempo. Por ejemplo, los sistemas que alma-
cenan energia no responden instantaneamente y presentan
respuestas transitorias cada vez mas sujetas a entradas inde-
seadas o perturbaciones.

Con frecuencia, las caracteristicas de desempeiio de un sis-
tema de control se especifican en términos de la respuesta tran-
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Plano s jw“ C(t) 1
1
ey ey 0 a=
>1 »
0 t
j(A) A C(t) A
Plano s 1
X >
X 0 o
=1 >
¢ 0 >
Plano s
5 o ] c(t) A
0<G<1 !
0 o
X 0 t

N o]
N -
o
w = >
Q"
PN
N2
= -
|
.

B 4

0
jw A co(e)4
Plano s X /\
1

0

oy
\

o
_—

g

A /

0>0>-1 X
Jjw & c(t)“
Plano s /
1
ol " o
G<-1

S)
A 4

Fig. 52. Comparacion de las respuestas en el tiempo
para valores diferentes de ¢
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sitoria para una entrada de escal6n unitario, puesto que ésta es
muy facil de generar y es suficientemente drastica.

La respuesta transitoria de un sistema para una entrada es-
calon unitario depende de las condiciones iniciales, por conve-
niencia al comparar las respuestas transitorias de varios siste-
mas, es muy practico usar la condicidn inicial cero (sistemas en
reposo), por lo cual todas las salidas y todas las derivadas con
respecto al tiempo son cero. De este modo las caracteristicas de
respuesta se comparan con facilidad.

En la practica la respuesta transitoria de un sistema de con-
trol muestra con frecuencia oscilaciones amortiguadas antes de
alcanzar el estado estacionario. Al especificar esta caracteristi-
ca para una entrada escalon unitario, es comun definir los para-
metros mostrados en la Figura n° 53 para su estudio.

A r(t) - ,Ll(t) Sobrepaso maximo o
maxima elongacion
/(t)
T

09 . _._._. - | i

P [

tmax | ;i I

i i

05 T === 1 | | I

Pl !

L A 1 !

Pl !
01 L. | | i I >
It ! e

: f : :

—> i

Fig. 64. Respuesta de un sistema de control segundo orden con entrada
escalon unitario.

t: tiempo de retardo.

t : tiempo de levantamiento o subida.
t :tiempo maximo.

max

t: tiempo de establecimiento o asentamiento.
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S): sobrepaso maximo.

Ahora estableceremos las ecuaciones que relacionan estos
pardmetros en la respuesta transitoria:

Sobrepaso mdximo
Se maximiza la ecuacion (96).
e—Cwnt

y(tf)=1—FC2 sen(mn\/l—g‘z t+COS'1(C))t20

Utilizando la derivacion, alli encontramos ¢ __ y luego la sus-
tituimos encontramos:
5

S =e'" (98)

Tiempo mdximo
Se encuentra al maximizar la funci(')ny(t) y obtenemos:

T

tmax = wn —_
V1-¢~2

Tiempo de retardo

Se hace un estudio aproximado de la curva de la ecuaciéon
y(t) en un intervalo 0 < §'< 1, donde determinamos que el tiem-
po de retardo es aproximadamente:

1+0.7¢
t = ——m—m,
a 1)

n

(99)

(100)

mas aproximadamente:
1.1 +0.125¢ + 0.469¢?

w

n

Ly

Tiempo de levantamiento

Anélogamente al tiempo de retardo se hace una aproxima-
cion en un rango 0 < ¢'< 1, donde encontramos:

, 0.8 +2.5¢

, (101)
w

n
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mas aproximadamente:

. 1-0.4167G¢+ 2.917¢*

r

w

n

Tiempo de establecimiento
La aproximacién que se hace para valores ¢ < 0.69.

t 52 (102)
s gfwn
EJEMPLO 8

El diagrama de bloque mostrado en la Figura n° 65, determi-
ne las constantes de error para entradas pulso, rampa y para-
boélica, la sefial de error es definida e(t), ademas determine el
error de estado estacionario en términos de ky k, luego deter-
mine los valores de ky k, si el sobrepaso maximo es 4.3% y el
tiempo de levantamiento es 0.2 seg; use las ecuaciones de (98)
hasta (91) para realizar los calculos.

R(S) E(s) 100 T C(S)
K X ™10z ™ 205 >
Kt <

Fig. 65. Diagrama de bloque del Ejemplo 8.

Primer paso: simplificar el diagrama de bloque a la forma
del modelo de realimentacion clasico.

R(S) E(S) 100 T C(S)
— > K >
1+0.2s+ 100kt 20s

\ 4
Y
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Luego,

R(s) E(s) 25K c(s)
AV .
- s?+ (5 + 500k,)s

\ 4

A

Ahora si podemos aplicar las formulas de las constantes de
error, para:

G(s) =

Segundo paso: aplicar las férmulas de las constantes kp, k,
k , para las entradas pulso, rampa y parabola.

25K
s?+ (5 + 500k,)s

y H(S)=1

Sistema Tipo 0

25K
k,= Lim G(s)H(s) = Lim == (5+500k)s . O

Sistema Tipo 1
25K
kv = Lim SG(S)H(S) = Lims < >
s—=0

s>0  \s(s+5+500k,)
25K 1 s+5+500k,
= =— =
s+5+500k, ” k 25K

Sistema Tipo 2
k =0,e =00

Tercer paso: determinar los valores de C'y w .

Los datos que tenemos son S5,=0.043yt =0.2seg, usando las
ecuaciones (98) y (101) tenemos:
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¢ T[C
0.043=¢""" =1n(0.043) = - —;
1-¢2
T n§)?
-3.1465 = - _m = (3.1465)? = (me)® ;
V1-¢? 1-¢2
9.869604 ¢*
9=——————=9.9-9.96¢%=9.869604G>
1-¢2
de donde 9.9 = 19.769604G>.
9.9
§?=—————=10.49923 = ¢ = 0.706.
19.769604

Ahora con ese valor buscamos w

0.8+25 0.8 +2.5(0.706
t =—C = 02= ( )

r

de donde:

w w

n n

0.8+ 1.76

w =12.825

0.2

Cuarto paso: construir el modelo de respuesta en el tiempo
de segundo orden.

w? ~ C(s)

G (s) = ”

s+ 20w + wnz' ) R(s)

) (12.825)?
~ 52+2(0.706)+ (12.825)s + (12.825)?

164.4806
2+ 18.10s + 164.4806
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Comparamos este modelo con el modelo obtenido en el pri-
mer paso.

C(g) _ 25K
R(s) s+ (5+500k)s+ 25K

comparando término a término y despejamos:

164.4806
25K=164.4806 = k = T =6.57

k=6.57
18.10-5
5 +500k,=18.10 = k =—————=0.0162
500
k,=0.0162

Controladores automdticos industriales

La funcién del controlador automatico es comparar el valor
real de la salida de la planta con el valor deseado, con el objeto
de minimizar los errores en los sistemas de control, como vi-
mos en los sistemas estudiados en el Capitulo 1, el controlador
determina la desviacién y produce una sefial de control que re-
duce la desviacidn a cero o a un valor pequerfio, la forma en que
el controlador produce la sefial se llama accién de control.

A continuaciéon describiremos las acciones de control fun-
damentales usadas comtunmente en controladores automaticos
industriales.

Las acciones de control que desempeiian los controladores
automaticos industriales consisten en minimizar los errores de
desempefio y mantener el sistema dentro de los parametros de-
seados de operacion, los mas comunes son: El de dos posiciones
encendido y apagado, proporcional, integral y derivativo. Es im-
portante comprender las propiedades basicas de las acciones
de control, con el objeto que se pueda seleccionar el controla-
dor mas adecuado, cuando se haga un analisis de un sistema en
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particular.

Veamos la Figura n° 66 donde se muestra un diagrama de
bloques de un sistema de control industrial, el cual consta de un
controlador automatico, un actuador, una planta y un elemento
de medicidn.

Controlador automatico

Detector de Error

Entrada de
Referencia +>_<

Amplificador A d — Planta

Detector de error del
actuador

El to de
medicion

Fig. 66. Diagrama de bloques de un sistema de control industrial.

El controlador detecta la seiial de error actuante, la cual
usualmente esta en el nivel mas bajo de potencia y la amplifica
la un nivel suficientemente alto.

El actuador es un elemento que produce una sefial a la entra-
da de la planta de acuerdo con la sefial de control, de modo que
la sefial de realimentacion corresponda a la sefial de entrada.

El elemento de medicién es un dispositivo que convierte la
variable de salida en otra variable, tal como desplazamiento,
presion o voltaje, la cual puede usarse para comparar la salida
con la sefial de entrada.

Controlador de dos posiciones o de encendido-apagado

El control de dos posiciones o de encendido-apagado es muy
barato y sencillo por lo cual es muy usado en la industria; su-
pongamos que la salida del controlador es b(t) y la sefial de
error e(t), la sefial del controlador b(t) permanece en un valor
maximo o minimo, dependiendo de que la sefial de error del
actuador sea positiva o negativa, de modo que si e(t) es menor
que cero, entonces pasa a un estado y si es positiva pasa a otro
estado, generalmente el estado que pasa el controlador cuando
la sefial es negativa es cero, veamos el diagrama de bloque en
la Figura n° 67.
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e(t) | 20

—_— —

Fig. 67. Controlador de dos posiciones.

Controlador proporcional

El controlador mostrado en la Figura n° 68 su accién de con-
trol definida en la relacién ecuacién (92).

b(s)
“TE)

e(t)

(103)

b(6)

Fig. 68. Controlador proporcional.

se llama ganancia proporcional, para el caso de sistemas de se-
gundo orden, el controlador responde de manera proporcional
a la sefial de error, el error de estado estacionario se reduce si
se incrementa el valor de la ganancia; sin embargo, esto haria
que la respuesta fuera mas oscilatoria.

Controlador derivativo

El controlador mostrado en la Figura n°® 69 analogamente al
anterior tiene una relacién en la ecuacién (104), éste responde
muy bien a la razén de cambio de velocidad del error y produce
una correccion de error antes que la magnitud de error sea de-
masiado grande.

G =—==sk 104
7 (104)
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et b(¢)

Fig. 69. Controlador derivativo.

Controlador integral

El controlador mostrado en la Figura n° 70 analogamente al
anterior tiene una relacién mostrada en la ecuacion (105), éste
controlador elimina el error en estado estacionario en respues-
ta al escalén unitario. Esta es una mejora importante al con-
trolador proporcional que produce un offset (error de estado
estacionario en presencia del controlador proporcional) esto se
observa colocandolo en un sistema de primer orden.

RLON
TS s (105)
CIN AR G

<
<«

Fig. 70. Controlador integral.

Controladores combinados

Con el objeto de mejorar su desempefio se usan también
controladores combinando los anteriormente, ellos se llaman:

Controladores proporcionales integrales
Cuya relacion de ganancia dada por:

b(s)

—_—= <—+1>; como vemos en la Figura n° 60.

= He) "
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(9 b()

—_ G.= k,,(1+1/5) —>

<
<

Fig. 71. Controlador proporcional integral.

Controladores proporcionales integrales derivativos
(PID)

Cuya relacion de ganancia esta dada por:

b(s) 1
G =—== : —+ 5+ 1 |; como vemos en la Figuran® 72.

() b(¢)

—— G = kp(1+s+1/s) —>

Fig. 72. Controlador proporcional Integral derivativo.

Para el andlisis de estos controladores s6lo se debe aplicar el
mismo procedimiento desarrollado en el ejemplo n° 8, donde se
resolvi6 el caso cuando el controlador es proporcional colocan-
do en el bloque G_una constante llamada K'y donde determina-
mos su valor de 6.57.

EJEMPLO 9

Sea el sistema de primer orden mostrado en la Figura n°
73.a. Determinar el error de estado estacionario si la entrada
es un pulso unitario para un controlador proporcional y luego
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usando un controlador integral y comparar los resultados.

R(s) — ()

_—

)
4
\/

¢ Tl osT+1

<
<

Fig. 73.a. Modelo de sistema de control.

Primer paso: calcular el error de estado estacionario.

Usando el procedimiento del Ejemplo 8, si G_ =K'y tenemos
que r(t) = u(t) tenemos:

R(s)= ==y
R(s) R(s) sT+1
E(s)= C(s)=1 K =s(sT+K+1)'
T el

usando el teorema de valor final y la ecuacién n°® 92.

sT+1 1
e, = Ll'me(t) = Ll'msE(s) = L1'ms< ) =
t—00 50 s—-0 S(ST+ K+ 1) K+1

La respuesta en el tiempo se dibuja en la Figura n° 73.b.
Segundo paso: resolver el mismo problema pero ahora con

K 1
Gc =y r(t) = ,u(t); tenemos R(s) ==y
s S

R(s) _ R(s) s(sT+1)
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«(t) |

\/

Figura 73.b. Respuesta a un pulso unitario y el error offset.

usando el teorema de valor final y la ecuacion (92).

T+1
e = Lime(t) = LimsE(s) = Lims<&> =0
SS t—00 s—0 s=0 S(SZT + K+ .S‘)

Este controlador elimina el error que habia con el contro-
lador proporcional, lo que representa una mejora importante
respecto al controlador anterior.

Sensibilidad en los sistemas de control realimentados

El concepto de sensibilidad es de primordial importancia
en los sistemas de control, un sistema realimentado percibe el
cambio en la salida debido a los cambios del proceso e intenta
corregir la salida.

La sensibilidad del sistema se define como la relacién del
cambio porcentual en la funciéon de transferencia del sistema
respeto al cambio porcentual en la funcién de transferencia del
proceso (parametro del sistema). La funcion de transferencia
del proceso para un cambio incremental pequefio la definire-
mos para este caso como:
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Y(s)

G(s)=—= (106)

R(s)
por tanto la sensibilidad se define
_46,/6s)
4G /G(s)’
si tomamos el limite para cambios pequeiios la ecuaciéon queda:

KA

GG(S)G(S)

(107)

S= (108)

EJEMPLO 10

Sea el sistema mostrado en la Figura n°® 74, determine la sen-
sibilidad respecto a K, si se tiene un controlador proporcional G,
=k, y la funcion de transferencia de la planta.

K
=G(s
s+0.1 ( )
La funcion de transferencia del sistema es:

G =

R(s) r(s)

' G, “|s+01

4
\

<
<

Fig. 74. Sistema de realimentacién unitaria del ejemplo n° 10.

Kk
.
G G s+0.1 Kk
6(5) = —e - e
1+G G Kk s+ 0.1+ Kk
p c 1+ p p

s+ 0.1
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entonces la sensibilidad respecto a K:

(o 96, K_K K (s+0.1+k K)-k?K
“OKG G (s+01+Kk)

~ K( kps +0.1+ kp) ~ (s +0.1+ Kkp)
- (s +0.1+ Kkp)2 - Kkp

o (s+01)
(s +0.1+ Kkp)

A medida que K se hace grande, la sensibilidad tiende a cero
y a medida que K se hace pequeiia la sensibilidad tiende a la
unidad y los cambios de K afectan directamente a la respuesta
de salida. Por lo tanto, se deben usar componentes en la plan-
ta que no varien con los cambios de ambiente u otros factores,
para que puedan mantenerse constantes.

Respuesta transitoria y estacionaria usando Matlab
Respuesta del sistema para una entrada pulso unitario.
Veamos el ejemplo:

os) _
R(s) () (s2+02+1)

> num=[ 01 0];

>den=[1 0.2 1];

>step(nun,den)

(Ver Figuran® 75)

Para una entrada rampa unitaria, s6lo se cambia:
>> r=t;

>> y=Isim(nun,den,rt);

>> plot(t,y)

(Ver Figuran® 76)
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Step Response

0.6 1

: Aﬂ/\/\ ’
VVV ,

=]

Amplitude

-0.4 i
-0.6 i
-0.8 - L L L L
0 10 20 30 40 50 60
Time (sec)

Fig. 75. Respuesta del sistema usando Matlab.

Fig. 76. Respuesta del sistema a una rampa unitaria.
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PROBLEMAS

1. Determine las soluciones de las siguientes ecuaciones
de estado, usando el métodos desarrollados en Métodos de
solucion de la ecuacién de variables de estado.

1.1

X 2 -3 || x 1 of| e
E BE x(0)=
[ 2 (] [0 1]k
1.2
-X'_ i --X_ L'€2t 2
el 2 o] ©@s
2 2 e 2
1.3
_X'l_ __4 2_ -X1_ -1 1
= t 0)=
X', _2 —1_ X, ' 2 H(e) «(0) 2
1.4
x' _ X -3 0
MR N NICECE
2 2 1 2

2. Determine las soluciones de las siguientes ecuaciones de es-
tado (espacios de estado), usando el método de diagonalizaciéon
o de vectores caracteristicos.

2.1

0 3
= + " y(t) x(0)= B
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2.2
X' -2 -2 0 X, -1 -1
Xo0l=l 0 0o 1 || % |40 |u) x(0)=|o0
X' 0 3 -4 [|%]| |1 1

23
X' 0 1 0 X, 0 2
o0zl 0 0 1 || %[+ 1 |u() x(0)=| 1
X1l -6-1 -6 || %] |2 0

3. Para las siguientes matrices de los coefientes determine la

controlabilidad y la observabilidad.
3.1

A: B= C= —1 3
0 1 -1 3]
3.2
2

a=| b % |B- c=[0 4]

1 1 1
3.3

-2 1 0 0
A= 0 -2 0 |B=

1|c=[0 -1 6]
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3.4
-1 1 0 0

A=| 0 -1 0 |B=|1]|c=[1 0 3]
0 0 -1 1

3.5

A= [_i _;} B:|: ﬂ c=[1 0]

4. Determine el tipo de sistema, para los sistemas de realimen-
tacién unitaria cuyas funciones de transferencias son dadas a
continuacion.

k

41 G(s)= (s+1)(1+ 10s)+ (1 + 205)

o 10(s+1)
42 G(s)= s(s+5)+(s+6)
43 G(s) =%

10e—O.ZS

44 G(s)= (s+1)(1 + 10s)+ (1 +205)
ie G(s) 10(5 - 1)

(s +5)+ (s+ 6)°
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5. Las siguientes funciones de transferencias son de sistemas
realimentados. Determine el error de estado estable para

t
entradas pulso unitario, rampa y parabola E,u(t).

1 1
51 G(s)=—— H(s) =
) SP+s+2 9 (s+1)
52 G(s)= H(s)=5
OB (5
s+1
5.3 G(s) =—— H(s) =
(S) SZ(S + 10) (S) s+2
4 10
54 G(s) = 7 H(s) =
s*+16s%+48s*+4s+ 4 s+5

6. Para los diagramas de bloques mostrados a continuacion,
determine el error de estado estacionario en términos de las
constantes K y K, asi mismo determine e(t) cuando y r(t) =

ty(t) y e(t) para r(t) =0y n(t) = ,u(t).

6.1

N(s)

1+0.02s % K E(s)

s2(s+25)

Ks e

t

Figura del problema N° 6.1.
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6.2

N (s)

c(s)

s+a ~ | K(s+3) -~
s ~ " |s¥(s +25) g

R(s) £(s)

Figura del problema N° 6.2

7. Determine en cada caso el modelo de respuesta del sistema
de segundo orden; para ello encuentre ¢y w .

71 5 =10%yt¢, =0,05seg.
7.2 Sp =20%yt,=0,01seg.
7.3 §,=10%yt =0,01seg.
7.4 S =4%yt, =0,05seg.

7.5 S =15%y t =0,08seg.

8. Para el sistema mostrado a continuacion:

R (S) w? Y(S)

¢ - s(s+ 2§wn)




202 Capitulo 5. Andlisis de sistemas de control en el dominio del tiempo.

Determine el error de estado estacionario para cuando G,
sea:

81 G.=k
k
82 G,=-L
N

8.3 G =sk

1
8.4 GC:kp<1+s+—>
s
1
8.5 Gc=kp<1 +—>
S

9. Repita el problema n° 8 para el sistema mostrado a continua-
cion:

R(s) - kG- 1) Y(s)

¢ TG+ 1) (s+2)




10.

11.

12.

13.

14.
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CAPITULO 6

ANALISIS DE ESTABILIDAD DE LOS
SISTEMAS DE CONTROL

Introduccion

Desde los estudios de ecuaciones diferenciales con coefi-
cientes constantes, aprendimos que la solucién homogénea
corresponde a la respuesta transitoria de un sistema y ésta de-
pende de las raices de la ecuacion caracteristica. Basicamente,
el disefio de un sistema de control podria ser considerado como
un problema de arreglo en la ubicacién de los polos y ceros en
la funcion de transferencia, tal que el sistema se desempenara
de acuerdo con las especificaciones preestablecidas.

Entre muchas formas de especificaciones de desempeio
usadas en el disefio de sistemas de control, el mas importante
requerimiento es que el sistema debe ser estable. Un sistema
inestable es generalmente considerado inutil.

Al disefiar un sistema de control, se debe ser capaz de pre-
decir el comportamiento dindmico a partir del conocimiento de
sus componentes. La caracteristica mas importante del com-
portamiento dindmico de un sistema de control, es la estabi-
lidad absoluta, es decir si un sistema es estable o inestable; un
sistema de control estd en equilibrio, si en ausencia de cual-
quier perturbacion o entrada, la salida permanece en el mismo
estado. Un sistema de control lineal e invariante en el tiempo es
estable si la salida termina por regresar a su estado de equili-
brio cuando el sistema esta sujeto a una condicién inicial.

Un sistema de control lineal e invariante en el tiempo es cri-
ticamente estable si las oscilaciones en la salida contintian en
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forma indefinida. Es inestable si la salida diverge sin limite a
partir de su estado de equilibrio cuando el sistema esta sujeto a
una condicion inicial.

En realidad la salida de un sistema fisico puede aumentar
hasta un cierto grado, pero puede estar limitado por detencio-
nes mecanicas o el sistema puede colapsarse o volverse no li-
neal una vez que la salida excede cierta magnitud por lo cual ya
no se aplicarian las ecuaciones diferenciales lineales.

Aparte de la estabilidad absoluta se debe considerar cui-
dadosamente la estabilidad relativa, ésta representa la medi-
da cuantitativa de la rapidez con que la respuesta transitoria
tiende a cero. Cuanto menor sea el tiempo en estabilizarse la
respuesta, el sistema es mas estable relativamente.

Por las razones anteriormente expuestas en este capitulo
estudiaremos el concepto de estabilidad y los métodos para de-
terminar la estabilidad de un sistema.

Concepto de estabilidad

Antes de definir la estabilidad de un sistema, haremos una
breve explicacién de la relacién de la ecuacion caracteristica
con los polos y ceros, veamos el modelo del sistema de control
en la Figura n°® 77, donde la ganancia del sistema es:

Ms) 6
R(s) 1+ G(S)H(s)

R(s) E(s) Y(s)

— 20 -

H (S) <

Fig. 77. Modelo de sistema de control realimentado.
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La ecuacion caracteristica queda definida como:

) =1+ GOHE) =0 G HE) o

f(s) = P(s) + KQ(s) = 0, (109)

=

donde Q(s) es un polinomio de grado n de la ecuacion caracte-
ristica en sy sus raices son llamadas ceros, P(s) es un polinomio
de grado m y sus raices son llamadas polos, el cual analizare-
mos con detalle a continuacion.

Un sistema lineal invariante en el tiempo es estable si:

a. Anteunaentradaacotadaresponde conunansalidaacotada.

b. Si todos los polos de la funcidn de transferencia estan en
el semiplano negativo de s, es decir, tienen la parte real
negativa.

La localizacion de polos de un sistema en el plano s repre-
senta la respuesta transitoria resultante. Los polos en el plano
derecho de s dan como resultado una respuesta decreciente
para entradas de perturbacion. Andlogamente, los polos en eje
jwy en el plano derecho de s dan como resultado una respuesta
neutral y otra creciente, respectivamente, para una entrada de
perturbacion, por tal razén la zona de estabilidad de un sistema
dindmico es el semiplano izquierdo del plano de s.

Por esto la condicidn necesaria y suficiente para que un
sistema realimentado sea estable es que todos los polos de la
funcién de transferencia del sistema tengan partes reales ne-
gativas, ubicados en el semiplano izquierdo de s, si la ecuacion
caracteristica tiene raices simples sobre el eje jw con respecto a
las raices del lado izquierdo del plano, el sistema se denomina
marginalmente estable, asi mismo para que un sistema reali-
mentado sea inestable bastarda que la ecuacion caracteristica
tenga al menos una raiz en el lado derecho del plano s. Véase la
Figura n° 78 las zonas de estabilidad en el plano s.



208 Capitulo 6. Andlisis de estabilidad de los sistemas de control.

Plano s

REGION REGION
YV R INESTABLE

REGION REGION
V)N INESTABLE

Fig. 78. Regiones de estabilidad en el plano s.

Nuestro problema ahora es determinar la estabilidad de un
sistema de control, para ello existen varios métodos para deter-
minar la estabilidad de un sistema realimentado, estos involu-
cran las raices de la ecuacion caracteristica. Los métodos mas
utilizados para estudiar la estabilidad de sistemas de control
son:

1. Criterio de Routh-Hurwitz.
2. Criterio de Nyquist.
3. Método de Diagrama de Bode.

Es evidente que para el andlisis de los sistemas de control,
se presentan métodos alternativos que resuelven el mismo pro-
blema, el disefiador simplemente selecciona el método a utili-
zar que considere que es la mejor herramienta, dependiendo de
la situacién particular que enfrenta. En lo particular, preferimos
los dos primeros, sin desmeritar y quitar la importancia al dia-
grama de Bode.
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Métodos para determinar la estabilidad

Criterio de Routh-Hurwitz

Es un método algebraico que ofrece informacidn sobre la es-
tabilidad absoluta de un sistema lineal invariante en el tiempo
que tiene una ecuacion caracteristica con coeficientes constan-
tes. El criterio prueba la estabilidad absoluta para cualquiera
de las raices de la ecuacidn caracteristica situadas en el lado
derecho del plano s, también indica para el nimero de raices
situadas en el eje jw y en el lado derecho del plano s.

Tabulacién de Routh

Para construir la tabulacion de Ruth se basa en ordenamien-
to de los coeficientes de la ecuacion caracteristica f(s) =as"+
a st . +a,s + a,= 0 tomando una lista o arreglo como
sigue a continuacidn:

ST A A, A, e

n n-2 n-4

n-1
S aH aH an75 ..................

Una regla nemotécnica consiste en tomar el inicial y luego
saltar un coeficiente y seleccionar el otro que sigue hasta que
se agoten los coeficientes, luego se empieza por el siguiente que
no fue seleccionado en el paso anterior y se repite el mismo
proceso para completar las dos filas principales, los arreglos
subsiguientes basados en calculos sencillos con el uso de la si-
guiente féormula:

Det

a,,_1 an—l an—3

veamos cOmo es el proceso.
Sea la ecuacioén caracteristica:

fls)=as+as’+ast+asi+asi+as+a, =0

Construimos las dos filas principales por seleccién alterna-
da:



210 Capitulo 6. Andlisis de estabilidad de los sistemas de control.

Luego necesitamos realizar céalculos sencillos para encon-
trar los siguientes grados que se indican a continuacidn:

56 6 4 2 aO
s° a a 0
. As B3 a(l) 0 e a5a4—a6a3;B: asaz—a6al,
aS aS
a.a,—a 0
C: 570 6 =a0
aS
Aa, - Ba Aa, -a.a
S3 D E O 0 D: 3A 5 . E: 1 A 570 .
A.O—aSO
=0
A
DB - AE Da,-A.0
s F a, 0 0 F= — a,= —)p
E—Da0
s G 0 0 0 G= 7 ;
GaO—F.O
s° a, 0 0 0 afF iz ;

Las raices de la ecuacidn caracteristica estaran en el semi-
plano izquierdo, si todos los elementos de la primera columna
tienen el mismo signo, asi mismo el nimero de cambios de sig-
nos en los elementos de la primera columna equivale al nimero
de raices con parte real positiva o en el semiplano derecho.
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El criterio establece que para que un sistema sea estable,
requiere que no haya cambios de signos en la primera colum-
na de la tabulacion, éste es un requisito necesario y suficiente;
sin embargo, existen casos especiales donde se debe adecuar o
modificar el procedimiento de calculo que veremos con detalle
a continuacion.

EjJEMPLO 1

Determine la estabilidad del sistema, cuya ecuacion caracte-
ristica es dada:

f(s)=2s*+s*+3s*+5s+10=0

s 2 3 10
s3 1 5 0
L0®-06
1
(7)) - (1)(10))
S — =643 0 0
s? 10 0 0

Hay cambios de signos en la primera columna de la tabula-
cién de Routh, la ecuacidn tiene dos raices en el lado derecho
del plano s, por lo tanto el sistema es INESTABLE. Usando el
criterio de Routh - Hurwitz.

Casos especiales

Caso n° 1. Cuando el primer elemento de una fila es
cero

Si un cero aparece en el primer elemento de la fila, la tabu-
lacién de Routh no debe continuar, para remediar la situacion,
debemos reemplazar el cero por un niimero positivo muy pe-
queio € y se continua con el proceso de la tabulaciéon de Routh
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EJEMPLO 2
Sea el sistema f(s) =s*+53+2s2+25+3=0
Veamos:
st 1 2 3
53 1 2 0
st 0 3
Luego se sustituye por € y queda:
st 1 2 3
53 1 2 0

st £ 3
£
s° 3

Dos cambios de signos, el coeficiente de s es negativo.
Caso n° 2. Cuando toda una fila es cero

Cuando toda la fila son ceros, se debe usar una ecuacién
auxiliar A(s) =(0, esta formada por la fila justo arriba a la de ce-
ros, luego se deriva la ecuacidn auxiliar y los coeficientes resul-
tantes de esa operacion se sustituyen en la fila de ceros, luego
se continua con el procedimiento de Routh.

EJEMPLO 3

Considere la ecuacion caracteristica de un sistema de con-
trol.

f(s)=55+4s4+853+852+7s+4=0

La tabulacion:
s° 1

S B O 0 ®©

4
s° 6
4
0
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Se usa la ecuacion auxiliar:

A(s)=s*+4=0
Luego,
dA
(S) =8s+0
dt

Se sustituyen estos coeficientes en la fila de ceros y queda:
s° 1 8 7

s* 4 8 4
s3 6 6

s? 4 4

s 8 0

s? 4

No hay cambios de signo, por tanto por el criterio de Routh
el sistema es ESTABLE

Ahora analicemos los parametros de un sistema usando el
criterio de Routh-Hurwitz. En este caso se involucran las cons-
tantes del sistema y se determina el intérvalo de valores que
deben de tomar para que el sistema sea estable.

EJEMPLO 4
K
5(52 + 25+ 2)(5 + 2)

Sea G(s)H(s) =

La ecuacion caracteristica es:
/(s):s4+4s3+652+4s+1(:0
La tabulacién de Routh.
st 1 6 K
s8 4 4 0
s? 5 K
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Para que el sistema sea estable debe cumplirse que K> 0y
20 - 4 K > 0 resolviendo el sistema de inecuaciones se obtiene
K> 0y K> 5, esto implica que el sistema es estable para los
valores de dentro del intervalo K < 0 < 5, para K =5 el sistema
se vuelve oscilatorio, lo que quiere decir que es marginalmente
estable.

EJEMPLO 5
Sea el sistemaf(s) =s3+3Bs’+ 25+ K=0.
La tabulacion de Routh;
s3 1 2 0
s 3B K 0
6B -K
3B
s° K
Para que el sistema sea estable debe cumplirse 3B >0 K> 0
y 6B - K> 0, esto implica que tenemos las inecuaciones B> 0, K
>0 y K> 6B, laregion de estabilidad es mostrada en la Figura
n° 79, para que el sistema sea estable B y K s6lo pueden tomar

valores dentro de la zona de estabilidad sin incluir los bordes,
B>0, K>0 yK>6B.

N

Criterio de Nyquist

Determina la estabilidad de un sistema a lazo cerrado a par-
tir de la respuesta de frecuencia en lazo abierto y los polos a
lazo abierto, por esta razén podemos decir que es un método
semigrafico que suministra informacién sobre la diferencia en-
tre el nimero de polos y ceros de la funcién de transferencia
de lazo cerrado o realimentado que se encuentran en el lado
derecho del plano s.

Antes de explicar el criterio de Nyquist, es necesario desa-
rrollar los diagramas polares que permiten graficar la respues-
ta de frecuencia de un sistema realimentado, estos diagramas
son utiles para investigar la estabilidad del sistema y sera de
mucha ayuda en la construccion de la grafica de Nyquist.
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K Ainestabilidad

w

[N

-

Fig. 79. Zona de estabilidad para el sistema del Ejemplo 5.

Diagramas polares: el diagrama polar de una funcién
transferencia Gt(ja)) es una grafica de magnitud respecto a
un angulo de fase de Gt(ja)), cuando w varia de cero a infinito,
por tanto se define como el lugar geométrico de los vectores
|Gt(jw)|AGt(iw) cuando w varia de cero a infinito, los angulos
polares seran positivos si se miden en sentido contrario a las
agujas del reloj y negativos si van en el mismo sentido de las
agujas del reloj a partir del eje real positivo.

Veamos ahora el analisis de graficas polares de los tipos de
control realimentado.

Caso n° 1. Sistema con dos polos reales

La funcién de transferencia a lazo abierto es:
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K
G(s)H(s) = (Ts+1)(Ts+1)

Analizamos primero la funcidn haciendo el cambio de s = jw,
nos queda:

, : K
lGe)= G e 1)

Ahora observemos los valores que toma la funciéon cuando
w tiende a cero y cuando tiende a infinito.

G(jw)H(jw) _ K20 w—0

De igual forma se puede construir una tabla de valores para
esta funcidén en el intervalo (0, 00) y graficar con el médulo y
angulo para cada valor dado a la funcion.

02-180 w—-

Veamos la Figura n° 80 donde se muestra el diagrama polar
de este tipo de sistema.

A

\/

Fig. 80. Diagrama polar para un sistema de dos polos reales.
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Caso n° 2 Sistema con dos polos reales y un polo en el
origen

La funcién de transferencia a lazo abierto es:
K
G(s)H(s) =————
()= G

Analizamos primero la funcién haciendo el cambio de s = jw,
nos queda:

K
Gjw)Hjw) = ——m———
Vo)) (Tjw +1)jw
Ahora observemos los valores que toma la funcién cuando w
tiende a cero y cuando tiende a infinito.

00 £ -90 w—0

G(jw)H(jeo) =
02£-180 w—x

También se puede construir una tabla de valores para esta
funcion variando w en el intervalo (0,00) y graficar con el modu-
lo y angulo para cada valor dado a la funcién, para obtener una
grafica mucho mas exacta.

Véase la Figura n® 81, donde se muestra el diagrama polar de
este tipo de sistema.

Otro ejemplo para este tipo de caso, pero cuatro polos y uno
en el origen. Sea el sistema:

K

G(s)H(s) = S(Ts+ 1)(Ts+1)(Ts + 1)

Analizamos primero la funcidn haciendo el cambio de s = jw,
nos queda:
K

G(jw)H(jw) = jo(Tjow +1)(Tjw +1)(Tjw +1)

Veamos los valores que toma la funcidén cuando w tiende a
cero y cuando tiende a infinito.
©0s£-90 w-0

G(]'w)H(jw) =

0£-360 w-ox
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A
\/

»=0"
Fig. 81. Diagrama polar para el caso n° 2.

Veamos la Figura n° 82, donde se muestra el diagrama polar
de este tipo de sistema:

®»=0"

Fig. 82. Diagrama polar el sistema de la ecuacion

6(jw)H(w)= K

jo(Tjo+ 1)(Tjo+1)(Tjo+1) |
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Obsérvese que el corte w se puede calcular cuan-
do Im[G fw H(]'a))] = 0 y el corte con el eje imaginario Re
[6(jw)H(jw)] = 0.

Caso n° 3. Polos reales y dos en el origen
Sea el sistema
K

G(s)H(s) = s (Ts+1)(T,s+1)(T,s+ 1)

Analizamos primero la funcién haciendo el cambio de s = jw,
nos queda:

. . K
G(jw)H(jw) = (jw)X(T jw + 1)(Tjw + 1)(Tjw + 1)

Analogamente hacemos el proceso anterior y obtenemos:

ooy

0 2£-180 w-0

024-360 w-o

Veamos la Figura n® 83, el diagrama polar del sistema:

-180 = > -360
0

\4
-90

Fig. 83. Diagrama polar para el sistema del Caso n° 3.
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Veamos el caso con un cero real, observemos el cambio en el
diagrama polar:
K(T;s+1)

) S s T

Analizamos primero la funcidn haciendo el cambio de s = jw,
nos queda:

K(Tjw + 1)
+1)(Tjow +1)(Tjw + 1)

Luego analizamos w cuando tiende a cero y a infinito.
002 -180 w—0
G(jw)H(jw) =

Veamos la Figura n° 84, el diagrama polar del sistema:

W)= oyt

04£-360 w—ox

-270
A

o,/ ]
o0 V T

A\
-90

Fig. 84. Diagrama polar para un sistema del caso n° 3 con un cero real.
Ahora estamos listos para analizar la estabilidad usando el

criterio Nyquist, para ello definiremos la trayectoria de Nyquist,
para analizar los sistemas de control lineales, se supone que el
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contorno cerrado en el plano s encierra el semiplano derecho
de éste. El contorno esta formado por el eje jw completo desde
w=- a @ =0,y una trayectoria circular de radio infinito en
el semiplano derecho de s. Dicho contorno se conoce como la
trayectoria de Nyquist (La trayectoria se forma en sentido de
las agujas del reloj).

Cuando la funcion de transferencia de lazo abierto G(S)H(s)
tiene n polos en el semiplano derecho de s, para ser estable el
sistema, el lugar geométrico de G(s)H(s) debe rodear n veces el
punto -1 + 0j en sentido contrario a la agujas del reloj, se traza
la trayectoria de Nyquist modificada en el sentido de la agujas
del reloj.

Para aplicar el criterio de Nyquist el diagrama polar debe di-
bujarse desde w = -00 a w = oo, para ello se debe completar
el diagrama, dibujando la parte negativa de diagrama polar, se
debe utilizar el conjugado del diagrama polar de la parte positi-
va, ésta es simétrica a la curva del diagrama polar para valores
positivos de w y uniendo los dos diagramas forman un circulo
de radio infinito.

Criterio de Nyquist expresa:
Z=N+P (110)

donde,

N = Numeros de rodeos en sentido de las agujas del reloj al
punto -1 + 0J.

N = Numeros de polos de G(s)H(s) en el semiplano derecho
des.

Z = Numero de ceros de G(s)H(s) en el semiplano derecho
des.

Si la trayectoria de Nyquist encierra Z ceros y P polos, no
pasa por los polos ni los ceros de f(s) en sentido de las agujas
del reloj, el contorno rodea un circulo de N = Z - P veces al pun-
to -1 + 0/ en sentido de las agujas del reloj (Los valores negati-
vos implican el sentido contrario a las agujas del reloj).
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Si P no es cero, para un sistema de control estable, se debe
tener Z=0 o N = -P, lo cual indica que debe tener P rodeos en
el punto -1 + 0] en el sentido de las agujas del reloj, si G(S)H(s)
no tiene polos en el semiplano derecho de s, entonces Z = N por
lo tanto, para que haya estabilidad, no debe haber rodeos a -1
+0]J.

Analisis de estabilidad usando el criterio de Nyquist

Para el andlisis de estabilidad se presentan tres casos usan-
do el criterio de Nyquist establece las siguientes condiciones:
1. El punto -1 + 0/ no estd rodeado, lo que implica que el

sistema es estable si no hay polos en el semiplano derecho
de s en caso contrario el sistema es inestable.

2. El punto -1 + 0] es rodeado una o varias veces en sentido
contrario a las agujas del reloj, el sistema es estable si
el nimero de rodeos es igual a nimero de polos en el
semiplano derecho de s; en caso contrario el sistema es
inestable.

3. El punto -1 + 0/ queda rodeado en una o varias veces en
sentido de las agujas del reloj diremos que el sistema es
inestable.

A continuacién damos algunos ejemplos donde se dibujaran
la trayectoria de Nyquist y haremos el analisis de estabilidad
usando el criterio de establecido por Nyquist.

EJEMPLO 6

Determine la estabilidad del sistema a lazo cerrado si la fun-
cién a lazo abierto es:

G(s)H(s) =

K
(Tls + 1)(T25 + 1)'

tomamos T, T, como constantes positivas.

Use el criterio de Nyquist para determinar la estabilidad del
sistema.

Primer paso: construir el diagrama polar y la trayectoria de
Nyquist.

Analizamos primero la funcidn haciendo el cambio de s = jw,
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nos queda:
K

G(jw)H(jw) = (Tjow+1)(Tjw+1)

'210 Grafico polar
/‘ simétrico
180 o K -360
-1 o =+
®»=0"
A\
-90

Fig. 85. Diagrama polar del ejemplo n° 6.

El diagrama polar simétrico es el conjugado del diagrama
polar de la parte positiva, es una curva que forma el circulo de
radio infinito en sentido de las agujas del reloj, este define la
trayectoria de Nyquist.

Segundo paso: analizamos la estabilidad usando el criterio
de Nyquist.

1. La funcién G(ja))H(ja)) = K , no tiene
(TJw + 1)(T2ja) + 1)

polos en el semiplano derecho de s.

2. Elpunto -1 + 0/ no esta rodeado por el lugar geométrico de
G(ja))H(jw) para cualesquiera valores de K T,, T, positivos.

Aplicando el criterio Nyquist, condicién n°® 1, se concluye
que el sistema es ESTABLE.
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EjJEMPLO 7

Determine la estabilidad del sistema a lazo cerrado si la fun-
cién a lazo abierto es:

G(s)H (s) =

K
ST+ (T v 1)

Use el criterio de Nyquist para determinar la estabilidad del
sistema.

Primer paso: construir el diagrama polar y la trayectoria de
Nyquist.
Analizamos primero la funcidn haciendo el cambio de s = jw,
nos queda:
K

SGlle) = ) Tjo s )

Para valores de K pequefio, la grafica que a continuaciéon
mostramos, la obtenemos haciendo el andlisis de w para valo-
res que tienden a cero y a infinito:

Grafico polar
simétrico

-180 | "1 -360

Fig. 86. Diagrama polar para K pequefio del ejemplo 7.

Para valores de K grandes, la grafica que obtenemos es:
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-270

-180 <

Fig. 76. Diagrama polar para K grande del ejemplo n°7.

Segundo paso: analizamos la estabilidad usando el criterio
de Nyquist.

Primero analizamos para valores de K pequefios.
K
1. La funcién G(jw)H(jw) = , ho tiene
(] ) (] ) jw(TJw + 1)(T2ja) + 1)
polos en el semiplano derecho de s.
2. El punto -1 + 0/ no estd rodeado por el lugar geométrico de
G(jw)H(jw).
3. Para cualesquiera valores de K, T, T, positivos, implica N =
0,N=0,P=0.
Aplicando el criterio Nyquist condicion n° 1, se concluye que
el sistema es ESTABLE.

En segundo Término analizamos para valores de K grandes.

1. La funcién G(/'a))H(jw) = ja)(lew " S(szw " 1) , ho tiene

polos en el semiplano derecho de s.
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2. El punto -1 + 0/ esta rodeado dos veces en sentido de las
agujas del reloj por el lugar geométrico de G(jw)H(jw) si
hay dos rodeos y no hay ceros esto implica que la férmula
N=Z-P, N=2.

3. Para cualesquiera valores grandes de K positivos, implica
N=2,Z=2,P=0 el criterio Nyquist la condicién n° 3, se
concluye que el sistema es INESTABLE.

EJEMPLO 8

Determine la estabilidad del sistema a lazo cerrado si la fun-
cién a lazo abierto es:

K(Tjw+1
6(s)(s) = Ke* 1),
S(lea) + 1)
Use el criterio de Nyquist para determinar la estabilidad del
sistema.

Primer paso: construir el diagrama polar y la trayectoria de
Nyquist.

Analizamos primero la funcidn haciendo el cambio de s = jw,
nos queda:

G(s)H(s) = M
s(Tjow+1)

El grafico lo obtenemos haciendo que w tienda a cero y a infi-
nito o construyendo la grafica para valores dentro del intérvalo
(—oo, 00), cabe destacar que primero mostramos la Figura n° 88
para valores de K grandes en y, luego mostramos la Figura n°
89 para valores de K pequeios. El analisis lo haremos de ma-
nera individual para estudiar la estabilidad del sistema, porque
presentan dos alternativas a considerar, analogamente como
lo realizamos en el ejemplo n° 7, debemos de tener cuidado al
dibujar es te tipo de grafica de Nyquist, porque cuando hay un
polo en el lado derecho del plano complejo debemos de cerrar
el circulo del lado izquierdo y en el mismo sentido de la agujas
del reloj, si encerramos el polo que se encuentra en plano posi-
tivo s, no estariamos dibujando correctamente la trayectoria de
Nyquist y no podremos analizar correctamente, veamos ahora:
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-270
P Grafico polar
simétrico
.“i"
-180 -360
.:E
"‘v..,‘_'.'
T,
.. \I L
1 -90

......

Fig. 88. Diagrama polar para valores de K grande del ejemplo n° 8.

Para valores de K pequefios:

-270
- Grafico polar
simétrico

/
-360
=' -1

\

5,
s,.‘.
"""»...,
—_
................... E 90 '
................. y

Fig. 89. Diagrama polar para valores de K pequefio del ejemplo n° 8.
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Segundo paso: analizamos la estabilidad usando el criterio
de Nyquist.
Primero analizamos para valores de K pequefios:
K(Tjw+1
1. La funcién G(jw)H(jw) = _—(L), tiene un polo en el
]a)(lea) - 1)
semiplano derecho de s.

2. El punto -1 + 0] esta rodeado una vez en el sentido de las
agujas del reloj por el lugar geométrico de G(jw)H(jw) para
cualesquiera valores de T, T, positivos.

Aplicando el criterio Nyquist condicién n° 3, se concluye que
el sistema es INESTABLE.
En segundo término analizamos para valores de K grandes.

K(Tjw + 1)

1. La funcién G(jw)H(ja)) = jw(TJw - 1)

tiene un polo en el

semiplano derecho de s.

2. El punto -1 + 0/ esta rodeado una vez en sentido contrario
a las agujas del reloj por el lugar geométrico de G(S)H(s) ,
donde el nimero de rodeos es igual al nimero de polos en
el semiplano derecho de s para cualesquiera valores de T,
T, positivos.

Aplicando el criterio Nyquist condicién n° 2, se concluye que
el sistema es ESTABLE.

Determinacion de estabilidad usando Matlab

Para el uso de la herramienta Matlab, s6lo se debe usar la
instruccion:

>nyquist(nun,den); hagamos un ejemplo en el uso de esta
instruccion.

EJEMPLO 9

Sea la funcion de transferencia simple:
K

G(s)H(s) = (0.1s+1)(0.25+ 1)
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A continuacion utilizaremos el software matematico Matlab
donde utilizaremos los comandos relacionados con el criterio
de Nyquist, para ello es necesario seguir los siguientes pasos:

Ejecutamos el programa Matlab y escribimos la instruccién
de la siguiente manera.

To get started, select “MATLAB Help” from the Help menu.
>> nun=[0 0 0.4];

>> den=[0.02 0.3 1];

>> nyquist(nun,den)

Al ejecutarlas instrucciones obtenemos la grafica de Nyquist:

Diagrama de Nyquist
025 T T T T

0.2
0.15F
0.1
0.05F

-0.051

Eje imaginario
=)

-0.1
-0.15F

-0.2

_0.25 C 1 1 1 1
-1 -0.8 -0.6 -0.4 -0.2
Eje real

Fig. 90. Grafico polar usando Matlab.

Este grafico es andlogo al modelo desarrollado en el Capitulo
6, primer caso.
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PROBLEMAS

1. Usando el criterio de Routh- Horwitz determine la estabili-
dad de los siguientes sistema:

K

1.1 G(S)H(S) = m

1.2 G(s)H(s) = G- ;;?S;le)+ 2)

100

1.3 G(s)H(S) = $3-5s2+3s+10

K(s-1)

L4 G(s)H(s) = s*+3s3+50s2+s+ 10

K(s-1)

15 G(s)H(s) = (5-5)(s2+2)

2. Para cada una de las ecuaciones caracteristicas de los siste-
mas de control dados a continuaciéon dados, determine el inter-
valo de estabilidad de K para que el sistema sea estable.

21 fls)=s*+(K+2)s*+2Ks+ 10K=0
2.2 fls)=s*+Ks*+5s*+10s+10=0
23 fls)=s*+Ks?+2s*+ (K+1)s+10=0
2.4 /(s)=s3+2052+55+10=0

3. La funcién de transferencia a lazo simple de un sistema de
control realimentado esta dado por:

K(s— 5)
s(s + 2)( Bs + 1)'

G(S)H (s) =
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donde los parametros K y B pueden ser representado en plano
K en el eje horizontal y B en el eje vertical, encuentre la zona de
estabilidad del sistema.

4. Para el diagrama de bloque de un motor con tacémetro
de realimentacién mostrado en la Figura n°® 60, determine el
intervalo de K, para que el sistema sea estable.

R(s) 100 ¥(s)
_>®_> Sl s(s+5)(s+10) >
A
< Ks |

Fig. 91. Diagrama de bloque del problema n° 4.

5. Para los sistemas de control realimentados donde G(S)H(s)
donde son dados a continuacion, determine la estabilidad siste-
ma usando el criterio de Nyquist.

K(s-1)
1 GOH) = D5 5) 5 15)
K(s+2)

5.2 G(s)H(s) = 35+

5.3 G(s)H(s) =

K
sz(s - 2)(5 + 10)
K(s+10)
s(s-1)(s +1000)
K(s+1)
s(s2 -7s+ 12)

54 G(s)H(s) =

5.5 G(s)H(s) =
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CAPITULO 7

TECNICA DEL LUGAR GEOMETRICO DE
RAICES

Introduccion

La respuesta transitoria de un sistema realimentado se rela-
ciona con la ubicacién de las raices de la ecuacidn caracteristica
del sistema, por lo tanto se puede describir el comportamiento
de un sistema realimentado (a lazo cerrado) en términos de la
ubicacién de las raices de la ecuacién caracteristica en el plano
s, donde contiene los polos y ceros del sistema.

Si la respuesta del sistema realimentado puede ajustarse de
tal forma que pueda conseguirse que éste tenga el comporta-
miento deseado mediante la variacién de uno o mas parame-
tros del sistema, resulta muy util determinar la ubicaciéon de las
raices de la ecuacion caracteristica del sistema cuando se mo-
difica un parametro, esto trae como consecuencia que cuando
un parametro del sistema es modificado, la ganancia del mismo
también varia haciendo que las raices de la ecuacidn caracteris-
tica se muevan a las posiciones deseadas.

W.R. Evans en 1948 desarroll6 un método sencillo para de-
terminar las raices de la ecuaciéon caracteristica, ampliamente
utilizado en los sistemas de control, este método se denomi-
na lugar geométrico de raices, con este método se grafican las
raices de la ecuacién caracteristica, para todos los valores de
un parametro del sistema. El lugar geométrico de raices es una
herramienta poderosa para el andlisis y disefio de sistemas de
control realimentado, el cual es el tema central de este capitulo.
Esta técnica se desarrollara basado en el analisis y propiedades
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para la construccién del lugar geométrico de raices manual-
mente, asi como también se mostrara los dibujos de los lugares
geométricos de raices generados con el uso de la herramienta
computacional Matlab.

Método de lugar geométrico de raices

De acuerdo al modelo de sistema de control mostrado en la
Figura n°® 77, en el Capitulo 6 de este texto, sobre la definicion
de estabilidad, en el cual se dedujo la férmula (109), la cual que-
doé de la forma:

/(S) =1+ G(S)H(s) =0

6(s)H(s) - KQ(()) = f(5) = P(s) + KQ(s) =,

ésta representa la ecuacion caracteristica del sistema de con-
trol,si 1 + G(S)H(s) =0, lo que implica que
G(s)H(s) =-1, (111)

como G(s)H(s) es una cantidad compleja, por lo tanto esta
ecuacion se divide en dos condiciones:

Condicién de angulo:
2G(s)H(s) =+m (2k + 1) (112)

Condicién de magnitud:

|G(s)H(s)| = 1 (113)
En muchos casos G(S)H(s) puede contener un parametro de
ganancia K, entonces la ecuacion caracteristica toma la forma

+K(s+zl)(s+zz) ......... (s+z )
(s+p)(s+p,)e(s+D,)

donde las raices del polinomio del numerador se definen como
ceros, se denotaran en la grafica en el plano s como “0” y las
raices del polinomio del denominador se denominan polosy se
denotaran en el plano s como “X”. Entonces los lugares geomé-

(114)
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tricos de raices para el sistema son los polos de lazo cerrado
cuando la ganancia K varia de cero a infinito.

Para efectos de identificacion, se definen las porciones de los
lugares geométricos de raices de acuerdo a los valores de K:

RL: porcion del lugar geométrico de raices donde K varia
desde cero hasta el infinito 0 < K < co.

RLC: porcion del lugar geométrico de raices donde K varia
desde menos infinito a cero -0 < K < oo,

RC: contornos de las raices cuando se varia mas de un para-
metro.

Lugar geométrico de las raices total: cuando los valores
de K varian desde menos infinito a infinito, —c0 < K < 0.

Propiedades y construccion del lugar geométrico de
raices

Las siguientes propiedades son muy utiles para construir el
lugar geométrico de raices manualmente, las propiedades se
desarrollan con base en los polos y ceros de la ecuacién carac-
teristica.

a) PuntosdondeK=0,K =+
Tomando la condiciéon de magnitud:

G(S)H(s) ggsg ” = [6(s)H(s)| = IKI (115)

Cuando K tiende a infinito G(S)H(s) tiende a cero, el valor
de s tiende a los ceros y si K tiende a cero, entonces G(s)H(s)
tiende a infinito, lo que implica que s tiende a los polos, como se
muestra en la Figura n® 92.

b) Numero de ramas

Son curvas continuas que comienzan en cada uno de los po-
los de G(S)H(s) para K > 0, el nimero de ramas lo determina el
numero de polos o raices del polinomio del denominador de
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Jw

Plano s

Fig. 92. Puntos donde los cuales K=0 y K= %~
G(S)H(s) de la forma:

K(s+2z,)(s+2,) (s+zm)_ s
(s +D,)(s+p,) (s+pn)‘G()H() (116)

c) Angulos de asintotas

Para K = 0 (RL), son asintdticas o asintotas con angulos se-

gun la ecuacidn:
(21’ + 1)1T
0 =— (117)
n-m

Para K < 0, (RLC) son asintéticas o asintotas con dngulos se-

gun la ecuacidn;
2im

6.= (118)

n-m

Coni=1,2,3..|n-m|-1
n representa el grado del polinomio del denominador y m el
grado del polinomio del numerador de la ecuacion (116) de
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G(s)H(s), siempre n > m, la razén estriba en que la mayoria de
las funciones tienen mas polos que ceros. Con n polos y m ce-
ros, se tienen n-m ramificaciones del lugar geométrico de raices
aproximandose a los n-m ceros en el infinito.

d) Centro de asintotas

Este representa el lugar geométrico de raices que cae en el
eje real de s segin la ecuacidn:

3 polos de G(S)H(s) - Y Ceros de G(S)H(s)
o=

n-m

, (119)

siempre es un nimero real, el centro de asintotas representa el
centro de gravedad del lugar geométrico de raices.

e) Lugar geométrico de raices en el eje real

Como se explico en anteriormente RL representa la secciéon
del lugar geométrico de raices donde K = 0, esta presente sobre
el eje real si el nimero total de polos y ceros de G(S)H(s) ala
derecha de la seccién es impar.

De igual forma CRL, la seccién del lugar geométrico de raices
donde K < 0, esta presente sobre el eje real si el nimero total
de polos y ceros de G(s)H(s) a la derecha de la seccién es par.
Cabe destacar que los polos y ceros complejos no contribuyen
a tipo de lugar geométrico de raices sobre el eje real. Como se
muestra en la Figura n°® 93.

Jw
X
Plano s
RL CRL RL CRL RL
X% 0 X X
X

Fig. 93. Lugar geométrico de raices sobre el eje real.



238 Capitulo 7. Técnica del lugar geométrico de raices.

f) Angulo de salida y llegada del lugar geométrico de
raices en polos o cero complejos

Los angulos de salida y llegada del lugar geométrico de rai-
ces de un cero o un polo de G(s)H(s) denotan el angulo de la
tangente del lugar geométrico de raices cerca del punto, se cal-
culan utilizando la condicién de angulo, de donde se deducen
las siguientes ecuaciones:

£G(s)H(s) = 3 (s +p)- R (s+2z)=(2i+ ) (120)

0<k<o
2G(s)H(s) = 3 t(s+z)- 3 £(s+p)=2in (121)
i-1 i-1
-0<k<0 para i-0,%1,%2....

La interpretaciéon de las ecuaciones 120 y 121, indican que
cualquier punto s, sobre RL que corresponde a valores positivos
de K, debe satisfacer la condicién; la diferencia entre las sumas
de los angulos vectores dibujados desde los ceros y los polos
hasta s, debe ser un multiplo impar de 180°. Analogamente
para valores negativos de K, debe satisfacer la siguiente condi-
cion: de que la diferencia entre las sumas de los angulos de los
vectores dibujados desde los ceros y los polos hasta s, debe ser
un multiplo par de 180°.

Ahora bien para calcular el valor de K en un punto s, sobre
el lugar geométrico de raices, bastara con aplicar la formula si-
guiente:

IT|(s+p)l
K| = —— (122)
fi 1(s+2)

Evaluandola en el punto s, y se obtiene el valor numérico de
K, la ecuacion (111) es utilizada para calcular los valores de K
para cualquier punto en plano s a lo largo del lugar geométrico
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de raices desde —c0 < K< 00 y as{ analizar el comportamiento del
sistema graficamente.

Es importante destacar que cuando se determina un angu-
lo de salida o llegada de RL de un polo o cero es determinado
el angulo de salida o llegada de CRL al mismo punto difiere en
180°, como se ilustra en la Figura n° 94.

Jw

Fig. 94. Angulo de apertura y salida en lugar geométrico de raices.

Aplicando la férmula (120) suponiendo que K > 0, entonces
la ecuaciéon queda expresada de la forma;

0,+6,+6,+6,-06,= (2i + 1)71, donde los angulos 6, 6, ,
6,, 6, se pueden determinar usando relaciones trigonométricas
conocidas, seguidamente se despeja 6, de la ecuacion, conside-
rando 6, =90°, quedando la expresion 6, = (Zi + 1)1T 6,-90-0,
+ 6., 1o que determina el valor del angulo buscado, analogamen-
te si K<0, aplica la formula (121) y se determina el valor del
angulo buscado.

g) Intercepcion del lugar geométrico de raices con el
eje imaginario

Para el corte con el eje imaginario, se debe aplicar el criterio

de estabilidad de Routh-Hurwitz para determinar el intervalo

donde K hace estable al sistema, seguidamente tomando los va-

lores marginales o criticos de K, se sustituye en el polinomio S?
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de la tabulacién de Routh y se iguala a cero, las raices complejas
de ese polinomio definen el corte con el eje imaginario, si este
polinomio no tiene raices complejas no hay corte con este eje.

h) Puntos de ruptura o puntos de silla

Los puntos de ruptura sobre el lugar geométrico de raices de 1
+ G(S)H(s) =0, deben cumplir con la condicién:

dG(s)H(s) 0 (123)
ds

Sin embargo, se debe acotar que no todas las soluciones de
la ecuacién (123) son puntos de ruptura, para que sea punto de
ruptura debe satisfacer la ecuacion 1 + G(S)H(s) =0, esto impli-
ca que debe ser un punto del lugar geométrico de raices para un
valor real de K, lo que se infiere las siguientes observaciones:

¢ Todas las soluciones reales, son puntos de rupturas, por-
que el eje real, esta contenido en el lugar geométrico de
raices

¢ Las soluciones complejas, seran puntos de ruptura si sa-
tisfacen la ecuacidn caracteristica o estdn contenidas en
el lugar geométrico de raices.

e Si |G(S)H(s)| = |_11(| =>K=- m, de donde se dedu-
dK  dG(s)H(s) _ dK _dG(s)H(s)
CeqUEg—m— ,ﬁg—T_O

Obsérvese que el angulo con el que sale o entra un lugar
geométrico de raices en un punto de ruptura, dependera del
numero de lugares geométricos en que estd involucrado dicho
punto, se observa en las Figuras n° 95 y n° 96 que salen o en-
tran con 90°, mientras que en la Figura n° 97, sale con 45°, por
lo tanto para n lugares geométricos de raices, ya sean RL o RLC,
que entran o salen de un punto de ruptura, su angulo esta defi-
nido como 180/n.
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Punto de
ruptura

Fig. 95. Punto de ruptura sobre el eje real entre dos polos.

Punto de
ruptura

Fig. 96. Punto de ruptura sobre eje real entre dos ceros.

X Punto de
ruptura

Fig. 97. Punto de ruptura sobre el eje real con polos conjugados.
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EjEMPLO 1
Dibuje el lugar geométrico de raices para el sistema:

G(s)H(s) = ﬁ

Determine el valor de K para ¢ = 0.5.

Solucién:
Primer paso: determinacién de la ecuacion caracteristica.
Usando la ecuacion (103), tenemos que:

K
1+G(s)H(s) = 1+ m

=0,=>53+3s+2s+K=0

Segundo paso: determinar los polos y ceros.

Las raices del polinomio del denominador que representan
los polos son, s, =0,s,=-1,s, =-2.

Las raices del polinomio del denominador, como no hay rai-
ces, se supone que hay un cero en el infinito, s = o0,

Tercer paso: nimero de ramas.

Como hay tres raices en el denominador hay tres ramas, por-
que el polinomio es de grado tres.
Cuarto paso: centro de asintotas.
0+1-2 -1
Aplicamos la férmula (119), o = ? = ? esto repre-
senta el centro de asintotas.
Quinto paso: angulos de las asintotas.

Aplicamos las férmulas (117) y (118), para K = 0, tenemos:
6,=60°

0, =180°

6, =300°
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Para K < 0 tenemos:

8,=0°
6, =120°
6, = 240°

Sexto paso: angulo de salida y apertura de polos o ceros.

Para nuestro problema este paso se obvia porque no hay po-
los o ceros complejos.

Séptimo paso: corte con el eje imaginario.

Se aplica el criterio de Routh-Hurwitz y la tabulacién de
Routh a la ecuacién caracteristica determinada en el primer
paso.

f(s)=s+3s*+2s+K =0,

luego aplicamos la tabulacién de Routh,

s° 1 2
s? 3 K
6-K
S _ 2
3

K>0
condiciones ; de donde la solucién es 0 < K< 6.
6-K>0

Tomamos el valor marginal K = 6, y sustituimos en el poli-
nomio 3s?> + K = 0, de la tabulacién de Routh, nos queda 3s? +
6 = 0, las raices del polinomio son s, = \/Ejy s, = —\/Ej, éstas
representan el corte con el eje imaginario.

Octavo paso: puntos de ruptura o silla.

Para calcular los puntos de ruptura aplicamos la ecuacion
(123), por lo tanto queda expresado que:

dK
—=3s"+65+2=0,
ds

cuyas las raices son s, = -1.57 y s, = -0.42; esto indica que hay
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puntos de ruptura sobre el eje real que satisfacen la ecuacion
(123).
Noveno paso: graficar todo el lugar geométrico de raices.

Usando todos los resultados obtenidos en los pasos anterio-
res se dibuja el lugar geométrico de raices:

A S
Asintotas K<0 Asintotas K>0 g—og

K:-OO \}

S=j1.414.

. Corte con eje el
$=0.20+j0.85  jmaginario

-3
S=-1.57, punto
de ruptura

K=00

» Asintotas K>0 Asintotas K>0

Fig. 98. Lugar geométrico de raices del sistema ;
s(s-1)(s+2)

Décimo paso: calcular el valor de K para ¢ = 0.5.

Se levanta una recta que parte del origen con un dngulo cuyo
valor es arcos (0.5) = 60°, tomando esa inclinacién, cuando in-
tercepte el lugar geométrico de raices, se determina el valor de
s, tomada de la grafica es s = -0.20 +; 0.85.

Seguidamente usando la ecuacion (122),

K= |s(s + 1)(3 + 2)

5=-024/08 1.8377

EJEMPLO 2

Dibuje el lugar geométrico de raices del sistema:
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K
5(52 +2s+ 2)(5 + 2)'

G(s)H(s) =

SOLUCION:
Primer paso: determinacion de la ecuacion caracteristica.
Usando la ecuacién (103), tenemos:
K
=0
s(s2 + 25+ 2)(3 + 2)

>5s5'+653+10s?+8s+K=0

1+G(s)H(s) = 1+

Segundo paso: determinar los polos y ceros:

Las raices del polinomio del denominador que representan
los polos son,s, =0,s,=-1+j,s,=-1-j,5, =-2.

Las raices del polinomio del denominador, como no hay rai-
ces, se supone que hay un cero en el infinito, s = 0.

Tercer paso: nimero de ramas.

Como hay tres raices en el denominador hay cuatro ramas,
porque el polinomio es de grado cuatro.

Cuarto paso: centro de las asintotas
0-1-j-1+j-2
4-0 B

Aplicamos la férmula (119), o = -1.5,

esto representa el centro de asintotas.
Quinto paso: dngulos de las asintotas.
Aplicamos las féormulas (117) y (118), para K = 0, tenemos

n-m
0, = 45°

6, = 135°
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6, =225°
6,=315°
2im
Para K<0 tenemos 6, = ;
n-m

6,=0

6,=90°

6,=180°

6,=270°

Sexto paso: dngulo de salida y apertura de polos o ceros.

Dibujamos los polos sobre el eje imaginario y seleccionamos
un polo complejo, hacemos concurrir una recta desde los de-
mas polos hasta un punto muy cercano al polo complejo selec-
cionado, como se muestra en el dibujo a continuacién.

JW
11
93

63
_ " ™

-4 -3 -2 -1

93

x_l 1-1

Fig. 99. Angulo de apertura y salida de polo complejo #
s(s*+2s)(s +2)

Si tomamos un punto lo mas cercano posible al polo, pode-
mos aproximar como si éste estuviese en el polo para calcular
los &ngulos mostrados en la Figura n°® 99, porque los angulos no
variaran significativamente, y seran aproximadamente los mis-
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mos que si el punto estuviese en el polo, pero para efectos del
calculo de K, se debe usar el punto aproximado al polo, porque
sino el resultado serda K = 0.

1
6,= arctg(g) =18.43°,
6,=180° - arctg (1) =180°-45°=135°,

6,=90°
Podemos decir que parai =1, K > 0 y calculamos el angulo
del polo complejo de la forma:
90° +18.43° + 135° + 6, = 540°
6, =540° - 243.57
=293.97° o
6,=-63.43°
Séptimo paso: corte con el eje imaginario.
Se aplica criterio de Routh-Hurwitz y la tabulacién de Routh
a la ecuacion caracteristica determinada en el primer paso.
f(s)=s*+65+10s>+8s+K =0,

y luego aplicamos la tabulacién de Routh. Se obtiene:

st 1 10 K
58 6 8
s? 8.6 K
69.2 - 6K
s
8.6
s? K

Las condiciones para estabilidad:

K>0 .,
~ La solucion es 0< K <11.64
69.2-6K>0
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Tomamos el valor marginal K = 11.64, y sustituimos en el
polinomio 8.66s? + K = 0, de la tabulacion de Routh, nos queda
8.66s* + 11.64 = 0 y las raices del polinomio sons, = 1.15jys,
= - 1.15j, las cuales representan el corte con el eje imaginario.

Octavo paso: puntos de ruptura o silla.

Para calcular los puntos de ruptura aplicamos la ecuacién
(123), por lo tanto queda expresado que:

dK
I =453+ 18s?> + 20s + 8 = 0, s6lo la raiz s, =-3,0922

satisface la ecuacion (123), las demas raices no se consideran.
Noveno paso: grafica del lugar geométrico de raices.

K<0
. $=1.15j, K=13.3
¢ — Corte con eje
-1 imaginario
CRL, K<0 CRL, K<0
= Dy =

S$=1.15j, K=13.3
Corte con eje
imaginario

S$=3.09. Punto de
ruptura o de silla

K<0

k<0 K<0 “

Fig. 100. Grafica del lugar geométrico de raices de ————
g garg s(s*+2s)(s +2)
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EJEMPLO 3

Dibuje el lugar geométrico de raices utilizando Matlab para
el sistema dado por la ecuacién:

6(5)H(s) = ——+3)

s*+ 553+ 20s% + 16s
Solucioén:

>num=[0 0 0 1 3];
>den=[1 5 2016 0];
>rlocus (num,den)

El programa generara la siguiente grafica:

6

—p——————

Eje imaginario
(e}

i e i R —

il itk el Tt ettt Lttt

- e T T e L T Ty ——

|
(@)
|
NN
|
[\GY) A

(=3 LI LS oL L L ELE) CELE L LT

NS~
S
(o)

Fig. 101. Lugar geométrico de raices utilizando Matlab.
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PROBLEMAS

1. Dibuje el lugar geométrico de raices para los sistemas mos-
trados a continuacion

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

K
s(s + 1)(5 + 3)(5 + 5)

K(s+4)

G(S)H(S) = z(s N 2)3

G(s)H(s) =

K(s + 1)
s(s2 +2s+ 2)

G(s)H(s) =

K(s +4)?
s*(s + 8)?

G(s)H(s) =

K(Zs + 5)
s (s?+2s+1)

G(s)H(s) =

K(s+5)
s(sz + 35+ 2)

G(s)H(s) =

= i)

K
+2s5+2)(s+5)

6($)H(s) = 5

2. Demuestre que el lugar geométrico de Raices para un sistema

de control con G(s) =

K(s?*+ 65+ 10)

H(s) =1 es un circulo con
s*+2s+10

el centro en el origen y con radio igual a /10 .
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3. Dibuje los lugares geométricos de raices para el sistema de
K(s+ 0.5
K(s+05) H(s)=1.

sS+st+1
4. Dibuje el lugar geométrico de raices para un sistema de con-
K(s + 4)
s(s2 + 25+ 2)

5.Paralas ecuaciones caracteristicas mostradas a continuacion,
dibuje el lugar geométrico de raices.

51 fls)=s*+3s?+(K+2)s+5K=0

control a lazo cerrado con G(s) =

trol a lazo cerrado con G(s) = H(s) =1.

52 fls)=s*+s*+(K+2)s+3K=0
5.3 f(s)=54+853+16sz+1((52+4s+ 5)=0

5.4 f(s)=s4+253+sz+2Ks+5K=0
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