
El Manual Esencial de Git

Fernando Cardellino

Introducción

Hola! Soy Sanjula, y en esta guía espero poder enseñarte un poco acerca de Git incluyendo:

Qué es Git

Porqué aprender Git

Establecer variables de configuración

Introducción al comando help en Git

Cómo convertir un proyecto existente en un repositorio de Git local

Cosas que hacer antes del primer commit

Cómo agregar archivos al área de preparación (staging area)

Cómo eliminar archivos del área de preparación

Realizar tu primer commit

Cómo clonar un repositorio remoto

Ver información sobre el respositorio remoto

Cómo enviar (push) tus cambios al repositorio remoto

Como crear una rama (branch) para una prestación o problema específico

Enviar la rama al repositorio remoto luego de ejecutar el comando commit

Cómo fusionar (merge) una rama

Cómo eliminar una rama

¡Empecemos!

¿Qué es Git?

En términos sencillos, Git es un sistema de control de versiones distribuido de código

abierto.

https://www.linkedin.com/in/sanjula-madurapperuma/
https://www.linkedin.com/in/sanjula-madurapperuma/

Los sistemas de control de versiones ayudan a cualquier equipo de software a gestionar cambios en el

código fuente de un producto o servicio a lo largo del tiempo. Realiza un seguimiento de todas las

modificaciones al código fuente en una base de datos. Si se ha cometido un error crítico en el código

fuente, los desarrolladores de un equipo de software pueden retrotraer el código fuente a una versión

antes de que se realizara el cambio erróneo. Como resultado, los sistemas de control de versiones

protegen el código fuente de desastres, errores humanos y consecuencias no deseadas (cuando una

corrección de errores rompe otra parte de la aplicación, por ejemplo).

Entonces, ¿Porqué aprender Git?

Git es el sistema de control de versiones más utilizado en el mundo actualmente. Es un proyecto de

código abierto maduro y mantenido activamente, desarrollado originalmente por Linus Torvalds.

Una cantidad asombrosa de proyectos de software dependen de Git para el control de versiones,

incluidos proyectos comerciales y de código abierto, especialmente utilizando el servicio de

alojamiento de repositorios de git, GitHub, que ahora es propiedad de Microsoft. De ahí la

importancia de aprender Git.

Prerrequisitos para esta guía

Descarga e instala git desde aquí

Verifica la versión de git

git --version

Figure-2: Git version

Si el número de versión es devuelto, entonces significa que git ha sido instalado exitosamente en tu

computador.

Estableciendo los valores de configuración

Ahora debemos establecer las variables de configuración global, que son muy importantes,

especialmente si estás trabajando con otros desarrolladores. La principal ventaja de esto es que es

más fácil averiguar quién ha hecho un commit de determinado bloque de código, por ejemplo.

http://www.git-scm.com/downloads
http://www.git-scm.com/downloads

git config --global user.name “Sanjula Madurapperuma”

git config --global user.email “sanjula@mail.com”

git config --list

Comando help

Como puedes notar, config es un verbo que se ha usado con frecuencia hasta ahora en este manual y

los verbos también se pueden usar como prefijo o sufijo con el comando help. Podemos usar el mismo

ejemplo (el verbo config) de arriba para explicar estos comandos.

git help config

git config --help

Figure-3: Comando Help

Los dos comandos indicados realizan la misma acción. Muestran la página de manual del verbo

especificado. Esto será útil para identificar capacidades más avanzadas de git.

Cómo inicializar un repositorio a partir de código existente

Si tienes un repositorio local que deseas convertir en un proyecto git para comenzar a rastrearlo,

entonces podemos comenzar ejecutando el comando de abajo dentro del directorio del proyecto.

git init

Figure-4: Git init

¡Listo! Así, has convertido tu proyecto en un repositorio local de git. Si abres la carpeta del proyecto,

verás que se ha creado un nuevo directorio llamado .git.

Que hacer antes del primer commit

Ingresa el siguiente comando para ver los archivos sin seguimiento (untracked files):

git status

Figure-5: Git status

Si hay archivos que no deseas que otras personas vean en el repositorio, como archivos que contienen

preferencias personales o las del IDE, has lo siguiente:

touch .gitignore

Figure-6: Crear archivo .gitignore

Para especificar qué archivos no se agregarán al repositorio de git, abre en un editor de texto el

archivo .gitignore, que se puede editar como un archivo de texto normal. Ahora podemos ingresar lo

siguiente en el archivo, por ejemplo:

.project

*.java

También se pueden utilizar caracteres comodín. En este caso, se ha utilizado para especificar que no

se agreguen todos los archivos que terminan con la extensión .java al repositorio.

Figure-7: Edición en el editor de texto

Ahora ejecuta nuevamente git status

Figure-8:Después de actualizar .gitignore

Ahora puedes ver que los archivos que indicamos en el archivo .gitignore ya no se muestran en la lista

de archivos sin seguimiento. El archivo .gitignore debe confirmarse (usando el comando commit) en

el repositorio para mantener las mismas exclusiones en todos los demás lugares.

Agregando archivos al área de preparación (staging area)

Todo este tiempo estuvimos en el directorio de trabajo. El área de preparación es donde organizamos

todos los archivos que se rastrean y deben confirmarse antes de enviarlos al repositorio de git. Es un

archivo que almacena lo que se debe incluir en la próxima confirmación.

Si deseas agregar todos los archivos que actualmente están sin seguimiento y has cambiado al área de

preparación, usa el siguiente comando:

git add -A

Si deseas agregar archivos individualmente, podemos indicar el nombre del archivo después de git

add. Por ejemplo,

git add .gitignore

Ahora, si escribes git status, verás que el archivo .gitignore está en el área de preparación.

Figure-9: area para Staging

Eliminando archivos del área de preparación

Para eliminar archivos del área de preparación de manera individual, escribe lo siguiente (por

ejemplo):

git reset simple.py

Esto eliminará el archivo simple.py del área de preparación. Para ver este cambio, escribe

nuevamente el comando git status.

Figure-10: Eliminación del archivo del área de preparación

Si deseas eliminar todos los archivos del área de preparación, entonces ejecuta lo siguiente:

git reset

Ahora, si escribes git status, veremos que todos los archivos han cambiado a archivos sin seguimiento.

Figure-11: Restablecer todos los archivos

Ejecutando el primer commit

Ahora ejecuta lo siguiente para agregar todos los archivos al área de preparación para ser

confirmados.

git add -A

Si lo deseas, puedes ejecutar git status para ver todos los archivos que serán confirmados.

Para realizar un commit, escribe lo siguiente.

git commit -m “Initial Commit”

“-m” especifica un mensaje que se debe pasar describiendo la confirmación. Dado que este es nuestro

primer commit, escribiremos Initial Commit.

Figure-12: Initial Commit

Como puedes ver, el commit se ha ejecutado correctamente.

Si ahora ejecutas git status, verás que se indica que el directorio de trabajo está limpio ya que se han

confirmado todos los archivos y no se ha modificado ninguno desde entonces.

Figure-13: Árbol de trabajo después del commit

Si ejecutamos el siguiente comando:

git log

luego podemos ver el commit que habiamos ejcutado, incluyendo el número hash del commit.

Figure-14: número de hash Commit

¡Ahora estamos rastreando exitosamente el proyecto local con git!

Clonando un repositorio remoto

Si queremos rastrear un proyecto remoto existente con git, entonces tenemos que escribir un

comando en el siguiente formato:

git clone <url> <directorio donde clonar>

A modo de ejemplo, usaré el repositorio de git en este enlace.

Primero me ubicaré en el directorio donde quiero clonar el proyecto, aunque puedes especificar esto

tal como se muestra arriba.

Ve al enlace del repositorio indicado antes y has clic en "Code", luego copia el url que figura.

Luego escribe:

git clone https://github.com/sanjulamadurapperuma/GitDemoMedium.git

https://github.com/sanjulamadurapperuma/GitDemoMedium
https://github.com/sanjulamadurapperuma/GitDemoMedium

Figure-15: Clonación del repositorio remoto

De esta forma hemos clonado el repositorio exitosamente.

Si ingresamos el siguiente comando, veremos todos los archivos que ahora están en el directorio local.

ls -la

Figure-16: Listar todos los archivos en el directorio

Viendo información sobre el repositorio remoto

Si escribes el siguiente comando:

git remote -v

Figure-17: Git remote -v

Este comando enumerará las ubicaciones de donde el repositorio local obtendrá los cambios

realizados externamente y a dónde serán enviadas tus confirmaciones o cambios que realices al

repositorio remoto.

Si escribes el comando:

git branch -a

Figure-18: Lista todas las ramas de git

Esto enumerará todas las ramas que se encuentran en el repositorio, tanto local como remotamente.

Para demostrar la actualización del repositorio remoto, haremos algunos cambios en los archivos del

repositorio que clonamos.

Figure-19: Realizar cambios en simple.py

Ahora que hemos realizado un cambio en nuestro código, la siguiente acción que debemos realizar es

enviar estos cambios al repositorio remoto.

Enviando los cambios al repositorio remoto

El siguiente comando mostrará todos los cambios que se han hecho a los archivos.

git diff

Figure-20: Ver los cambios en el archivo

Si ingresamos git status de nuevo, veremos que se han rastreado cambios y que simple.py ha sido

modificado.

Figure-21: Ver archivos modificados

Ahora agrégalos al área de preparación

git add -A

Ejecuta git status nuevamente

Figure-22: Agregar archivos al área de staging

Ahora vemos que simple.py esta listo para ser confirmado.

Luego escribe el comando commit con un mensaje

git commit -m “Updated hello function”

Figure-23: mensaje Commit

Ahora debemos enviar los cambios confirmados al repositorio remoto para que otras personas tengan

acceso a ellos.

Dado que lo común es que hay varios desarrolladores trabajando en un solo proyecto, primero

tenemos que extraer cualquier cambio que se haya realizado en el repositorio remoto antes de enviar

nuestros cambios para evitar conflictos.

Ejecuta el siguiente comando:

git pull origin master

Figure-24: Extraer cambios del repositorio remoto

Como ya estamos actualizados, ahora podemos enviar nuestros cambios al repositorio remoto.

Ahora ejecuta lo siguiente:

git push origin master

Figure-25: Subir cambios al repositorio remoto

¡Hemos enviado con éxito nuestros cambios a la rama principal del repositorio remoto!

Creando una rama para una prestación o problema especifico

Hasta ahora hemos estado trabajando en nuestra rama maestra o principal, pero no es así como

deberías trabajar en git como desarrollador porque la rama maestra debe ser una versión estable del

proyecto en el que estás trabajando. Entonces, para cada prestación o problema, generalmente es la

norma crear tu propia rama y luego trabajar sobre esa rama.

El comando para crear una nueva rama llamada simple-greeting es el siguiente:

git branch simple-greeting

Ahora si ejecutas

git branch

luego verás todas las ramas del repositorio, y la rama en la que tu estás ubicado se encuentra resaltada

con un asterisco del lado izquierdo

Figure-26: git branch

Si deseas cambiarte a la rama recientemente creada por ti, escribe lo siguiente:

git checkout simple-greeting

Ahora, si escribes git branch verás que ahora te encuentras en la rama simple-greeting.

Ahora debemos realizar los cambios en el proyecto. Nos dirigimos al archivo y definimos la función

greeting.

Figure-27: Definir la función de saludo

Ahora repetimos el proceso para confirmar estos cambios:

git status

Figure-28: Ver los cambios que no son staged

git add -A

git commit -m “Greeting Function”

Figure-29: mensaje Commit para la función de saludo

Este commit solo cambiará los archivos en la rama simple-greeting local, no habiendo alterado aún la

rama master local ni el repositorio remoto.

Enviando la rama al repositorio remoto luego de efectuar una confirmación

Ingresa el siguiente comando:

git push -u origin simple-greeting

donde origin es el nombre del respositorio y simple-greeting es la rama que le queremos enviar.

Figure-30: Sube la rama al repositorio remoto

Ahora hemos enviado la rama simple-greeting al repositorio remoto. Si escribes:

git branch -a

Figure-31: Rama de simple-greeting en el repositorio remoto

Ahora vemos que en nuestro repositorio remoto tenemos la rama simple-greeting. ¿Porqué debemos

enviar la rama al repositorio remoto? Porque en algunas empresas es allí donde ejecutan sus pruebas

unitarias y en otras para asegurarse de que el código se ejecute bien antes de fusionarse con la rama

maestra.

Dado que todas la prueban ha sido exitosas (no entraremos en detalles de eso aquí), ahora podemos

fusionar la rama simple-greeting con la rama principal.

Fusionando una rama

Primero, debemos ubicarnos (checkout) en la rama maestra local

git checkout master

Figure-32: Navegar a la rama master

Extraemos todos los cambios de la rama maestra remota:

git pull origin master

Figure-33: Extraer cambios del repositorio remoto

Ahora veremos todas las ramas que hemos fusionado hasta ahora:

git branch —-merged

Figure-34: Mostrar ramas ligadas

la rama simple-greeting no figurará ya que aún no la hemos fusionado.

Para fusionar simple-greeting con la principal, ingresa:

git merge simple-greeting

(Ten en cuenta que ahora estamos en la rama maestra)

Figure-35: Ligar la rama simple-greeting

Ahora que ha sido fusionada, podemos enviar los cambios a la rama maestra del repositorio remoto.

git push origin master

Figure-36: Sube a la rama maestra remota

Ahora los cambios han sido enviados a la rama maestra del repositorio remoto.

Eliminando una rama

Dado que la función o la nueva prestación ya se ha implementado, podemos eliminar la rama simple-

greeting. Para verificar la fusión realizada en la sección anterior, podemos ejecutar:

git branch --merged

Figure-37: Mostrar ramas ligadas

Si simple-greeting se muestra aquí, eso significa que hemos fusionado todos los cambios y que la

rama ya puede ser descartada.

git branch -d simple-greeting

Figure-38: Eliminar rama local simple-greeting

Ahora la rama ha sido eliminada localmente.

Pero como la hemos enviado al repositorio remoto, aún continua ahí. Esto puede ser visto ejecutando:

git branch -a

Figure-39: Mostrar todas las ramas

Para eliminar la rama del repositorio remoto, escribe:

git push origin --delete simple-greeting

Figure-40: Eliminar rama remota simple-greeting

Si volvemos a ejecutar

git branch -a

Figure-41: Mostrar todas las ramas

Podemos ver que la rama ahora a sido eliminada también del repositorio remoto.

¡¡Felicitaciones!! ¡Ahora eres un maestro en los comandos básicos pero críticos de Git!

Para referencia o uso de este tutorial, aquí está el enlace del repositorio público de GitHub

Traducido del artículo de Sanjula Madurapperuma - The Essential Git Handbook

Aprende a codificar de forma gratuita. El plan de estudios de código abierto de freeCodeCamp ha

ayudado a más de 40,000 personas a obtener trabajos como desarrolladores. Empezar

https://github.com/sanjulamadurapperuma/GitDemoMedium
https://github.com/sanjulamadurapperuma/GitDemoMedium
https://www.freecodecamp.org/news/author/sanjula/
https://www.freecodecamp.org/news/author/sanjula/
https://www.freecodecamp.org/news/author/sanjula/
https://www.freecodecamp.org/news/the-essential-git-handbook-a1cf77ed11b5/
https://www.freecodecamp.org/news/the-essential-git-handbook-a1cf77ed11b5/
https://www.freecodecamp.org/espanol/learn/
https://www.freecodecamp.org/espanol/learn/

