El Manual Esencial de Git

Fernando Cardellino

Introduccion

Hola! Soy Sanjula, y en esta guia espero poder ensefiarte un poco acerca de Git incluyendo:
Qué es Git

Porqué aprender Git

Establecer variables de configuracion

Introduccion al comando help en Git

Coémo convertir un proyecto existente en un repositorio de Git local

Cosas que hacer antes del primer commit

Coémo agregar archivos al area de preparacion (staging area)

Coémo eliminar archivos del area de preparacion

Realizar tu primer commit

Como clonar un repositorio remoto

Ver informacion sobre el respositorio remoto

Coémo enviar (push) tus cambios al repositorio remoto

Como crear una rama (branch) para una prestacion o problema especifico
Enviar la rama al repositorio remoto luego de ejecutar el comando commit
Coémo fusionar (merge) una rama

Coémo eliminar una rama

iEmpecemos!
¢Qué es Git?

En términos sencillos, Git es un sistema de control de versiones distribuido de codigo
abierto.


https://www.linkedin.com/in/sanjula-madurapperuma/
https://www.linkedin.com/in/sanjula-madurapperuma/

Los sistemas de control de versiones ayudan a cualquier equipo de software a gestionar cambios en el
cddigo fuente de un producto o servicio a lo largo del tiempo. Realiza un seguimiento de todas las
modificaciones al c6digo fuente en una base de datos. Si se ha cometido un error critico en el cdédigo
fuente, los desarrolladores de un equipo de software pueden retrotraer el codigo fuente a una version
antes de que se realizara el cambio erréneo. Como resultado, los sistemas de control de versiones
protegen el cddigo fuente de desastres, errores humanos y consecuencias no deseadas (cuando una

correccion de errores rompe otra parte de la aplicacion, por ejemplo).
Entonces, ¢Porqué aprender Git?

Git es el sistema de control de versiones mas utilizado en el mundo actualmente. Es un proyecto de

cddigo abierto maduro y mantenido activamente, desarrollado originalmente por Linus Torvalds.

Una cantidad asombrosa de proyectos de software dependen de Git para el control de versiones,
incluidos proyectos comerciales y de codigo abierto, especialmente utilizando el servicio de
alojamiento de repositorios de git, GitHub, que ahora es propiedad de Microsoft. De ahi la
importancia de aprender Git.

Prerrequisitos para esta guia
Descarga e instala git desde aqui

Verifica la version de git

[git --version ]

Q sanjula@sanjula-pc: ~

$ git --version

Y |

git version 2.20.1

Figure-2: Git version
Si el nimero de version es devuelto, entonces significa que git ha sido instalado exitosamente en tu
computador.

Estableciendo los valores de configuraciéon

Ahora debemos establecer las variables de configuracion global, que son muy importantes,
especialmente si estas trabajando con otros desarrolladores. La principal ventaja de esto es que es

maés facil averiguar quién ha hecho un commit de determinado bloque de c6digo, por ejemplo.


http://www.git-scm.com/downloads
http://www.git-scm.com/downloads

[git config --global user.name “Sanjula Madurapperuma® ]

[git config --global user.email “sanjula@mail.com” ]
[git config --list ]
Comando help

Como puedes notar, config es un verbo que se ha usado con frecuencia hasta ahora en este manual y
los verbos también se pueden usar como prefijo o sufijo con el comando help. Podemos usar el mismo

ejemplo (el verbo config) de arriba para explicar estos comandos.

[git help config }

[git config --help ]

Q sanjula@sanjula-pc: ~ - O

GIT-CONFIG(1) Git Manual GIT-CONFIG(1)

NAME
git-config - Get and set repository or global options

SYNOPSIS
git config [<file-option>] [--type=<type>] [--show-origin] [-z]|--null] na
me [value [value_regex]]
git config [<file-option>] [--type=<type>] --add name value
git config [<file-option>] [--type=<type>] --replace-all name value [valu
e _regex]
git config [<file-option>] [--type=<type>] [--show-origin] [-z]|--null] --
get name [value_regex]
git config [<file-option>] [--type=<type>] [--show-origin] [-z]|--null] --
get-all name [value_regex]
git config [<file-option>] [--type=<type>] [--show-origin] [-z]|--null] [-
-name-only] --get-regexp name_regex [value regex]
git config [<file-option>] [--type=<type>] [-z]|--null] --get-urlmatch nam
e URL
git config [<file-option>] --unset name [value_regex]
git config [<file-option>] --unset-all name [value_regex]
--rename-section old_name new_name
--remove-section name
Manual page git-config(1l) line 1 (press h for help or q to quit)

Figure-3: Comando Help

Los dos comandos indicados realizan la misma accién. Muestran la pagina de manual del verbo

especificado. Esto ser4 util para identificar capacidades mas avanzadas de git.
Como inicializar un repositorio a partir de codigo existente

Si tienes un repositorio local que deseas convertir en un proyecto git para comenzar a rastrearlo,



entonces podemos comenzar ejecutando el comando de abajo dentro del directorio del proyecto.

git init

Q sanjula@sanjula-pc: ~/Documents/GitDemo/LocalRepository [+1 =

- $ git init
Initialized empty Git repository in /home/sanjula/Documents/GitDemo/LocalReposit

ory/.git/
s

Figure-4: Git init

iListo! Asi, has convertido tu proyecto en un repositorio local de git. Si abres la carpeta del proyecto,

veras que se ha creado un nuevo directorio llamado .git.
Que hacer antes del primer commit

Ingresa el siguiente comando para ver los archivos sin seguimiento (untracked files):

&it status

$ git status
On branch master

No commits yet

Untracked files:
(use "git add <file>...

"

to include in what will be committed)

nothing added to commit but untracked files present (use "git add" to track)

|

Figure-5: Git status

Si hay archivos que no deseas que otras personas vean en el repositorio, como archivos que contienen

preferencias personales o las del IDE, has lo siguiente:

&ouch .gitignore

$ touch .gitignore

Figure-6: Crear archivo .gitignore

Para especificar qué archivos no se agregaran al repositorio de git, abre en un editor de texto el
archivo .gitignore, que se puede editar como un archivo de texto normal. Ahora podemos ingresar lo

siguiente en el archivo, por ejemplo:

[.pr‘oject




*.java

También se pueden utilizar caracteres comodin. En este caso, se ha utilizado para especificar que no

se agreguen todos los archivos que terminan con la extension .java al repositorio.

.gitignore — ~/Documents/GitDemo/LocalRepository — Atom - 0O X

Project .gitignore

[E) .aitignore
project

Figure-7: Edicion en el editor de texto

Ahora ejecuta nuevamente git status

git status
On branch master

No commits yet

Untracked files:
(use "git add <file>..." to include in what will be committed)

nothing added to commit but untracked files present (use "git add" to track)

Figure-8:Después de actualizar .gitignore

Ahora puedes ver que los archivos que indicamos en el archivo .gitignore ya no se muestran en la lista

de archivos sin seguimiento. El archivo .gitignore debe confirmarse (usando el comando commit) en




el repositorio para mantener las mismas exclusiones en todos los demés lugares.
Agregando archivos al area de preparacion (staging area)

Todo este tiempo estuvimos en el directorio de trabajo. El 4rea de preparacion es donde organizamos
todos los archivos que se rastrean y deben confirmarse antes de enviarlos al repositorio de git. Es un

archivo que almacena lo que se debe incluir en la proxima confirmacion.

Si deseas agregar todos los archivos que actualmente estan sin seguimiento y has cambiado al area de

preparacion, usa el siguiente comando:

git add -A )

Si deseas agregar archivos individualmente, podemos indicar el nombre del archivo después de git

add. Por ejemplo,

[git add .gitignore ]

Ahora, si escribes git status, veras que el archivo .gitignore esta en el area de preparacion.

$ git add -A
$ git status
On branch master

No commits yet

Changes to be committed:
(use "git rm --cached <file>...

to unstage)

Figure-9: area para Staging
Eliminando archivos del area de preparacion

Para eliminar archivos del area de preparacion de manera individual, escribe lo siguiente (por

ejemplo):

ﬁgit reset simple.py ]

Esto eliminari el archivo simple.py del 4rea de preparacion. Para ver este cambio, escribe

nuevamente el comando git status.

S git reset simple.py
$ git status
On branch master

No commits yet




anges to be commu -
(use "git rm --cached <file>...

L]

to unstage)

Untracked files:
(use "git add <file>...

"

to include in what will be committed)

Figure-10: Eliminacién del archivo del area de preparacion

Si deseas eliminar todos los archivos del area de preparacion, entonces ejecuta lo siguiente:

%it reset ]

Ahora, si escribes git status, veremos que todos los archivos han cambiado a archivos sin seguimiento.

$ git reset
$ git status
On branch master

No commits yet

Untracked files:
(use "git add <file>...

to include in what will be committed)

nothing added to commit but untracked files present (use "git add" to track)
Figure-11: Restablecer todos los archivos

Ejecutando el primer commit

Ahora ejecuta lo siguiente para agregar todos los archivos al area de preparacion para ser

confirmados.

git add -A |

Si lo deseas, puedes ejecutar git status para ver todos los archivos que seran confirmados.

Para realizar un commit, escribe lo siguiente.

%it commit -m “Initial Commit” ]

“-m” especifica un mensaje que se debe pasar describiendo la confirmacion. Dado que este es nuestro

primer commit, escribiremos Initial Commit.

S git add -A
$ git commit -m "Initial C




2 files changed, 4 insertions(+)

create mode 100644 .gitignore
create mode 100644 simple.py

Figure-12: Initial Commit

Como puedes ver, el commit se ha ejecutado correctamente.

Si ahora ejecutas git status, veras que se indica que el directorio de trabajo est4 limpio ya que se han
confirmado todos los archivos y no se ha modificado ninguno desde entonces.

S git status

On branch master
nothing to commit, working tree clean

Figure-13: Arbol de trabajo después del commit

Si ejecutamos el siguiente comando:

[git log ]

luego podemos ver el commit que habiamos ejcutado, incluyendo el nimero hash del commit.

commit d39d68912a5ddace58df3f1a52156686d078a804

$ git log
Author: Sanjula Madurapperuma <sanju1a99@gmai1.c6m> :

Date: Fri Apr 19 10:18:29 2019 +0530

Initial Commit

Figure-14: namero de hash Commit

iAhora estamos rastreando exitosamente el proyecto local con git!
Clonando un repositorio remoto

Si queremos rastrear un proyecto remoto existente con git, entonces tenemos que escribir un

comando en el siguiente formato:

[git clone <url> <directorio donde clonar> ]

A modo de ejemplo, usaré el repositorio de git en este enlace.

Primero me ubicaré en el directorio donde quiero clonar el proyecto, aunque puedes especificar esto

tal como se muestra arriba.
Ve al enlace del repositorio indicado antes y has clic en "Code", luego copia el url que figura.

Luego escribe:

[git clone https://github.com/sanjulamadurapperuma/GitDemoMedium.git }

- S cd ..
- $ cd RemoteRepository



https://github.com/sanjulamadurapperuma/GitDemoMedium
https://github.com/sanjulamadurapperuma/GitDemoMedium

b.com/sanjulamadurapperuma/GitDemoMedium.git
Cloning into 'GitDemoMedium'...
remote: Enumerating objects: 4, done.

remote: Counting objects: 100% (4/4), done.

remote: Compressing objects: 100% (2/2), done.

remote: Total 4 (delta 0), reused 4 (delta 0), pack-reused 0
Unpacking objects: 100% (4/4), done.

Figure-15: Clonacion del repositorio remoto

De esta forma hemos clonado el repositorio exitosamente.

Si ingresamos el siguiente comando, veremos todos los archivos que ahora estan en el directorio local.

= |

S cd GitDemoMedium
S 1s -1la

total 20

drwxr-xr-x sanjula sanjula ca® 131

drwxr-xr-x sanjula sanjula G0 :31

drwxr-xr-x sanjula sanjula a® 131

~-fW-r--r-- sanjula sanjula G ® :31 .gitignore
~fW-r--r-- sanjula sanjula ca® :31 simple.py

Figure-16: Listar todos los archivos en el directorio
Viendo informacion sobre el repositorio remoto

Si escribes el siguiente comando:

%it remote -v }

git remot

https://github.com/sanjulamadurapperuma/GitDemoMedium.git (fetch)
https://github.com/sanjulamadurapperuma/GitDemoMedium.git (push)

Figure-17: Git remote -v

Este comando enumerara las ubicaciones de donde el repositorio local obtendra los cambios
realizados externamente y a donde seran enviadas tus confirmaciones o cambios que realices al

repositorio remoto.

Si escribes el comando:

%it branch -a }

-> origin/master




Figure-18: Lista todas las ramas de git
Esto enumerara todas las ramas que se encuentran en el repositorio, tanto local como remotamente.

Para demostrar la actualizacion del repositorio remoto, haremos algunos cambios en los archivos del

repositorio que clonamos.

simple.py — ~/Documents/GitDemo/RemoteRepository/GitD...

Project simple.py

v GitDemoMedium

[£) .gitignore

& simple.py

Figure-19: Realizar cambios en simple.py

Ahora que hemos realizado un cambio en nuestro cédigo, la siguiente accion que debemos realizar es

enviar estos cambios al repositorio remoto.
Enviando los cambios al repositorio remoto

El siguiente comando mostrara todos los cambios que se han hecho a los archivos.

git diff

- $ git diff
diff --git a/simple.py b/simple.py

index 60e55ba..0df6225 100644

--- af/simple.py

+++ b/simple.py

def hello:




C e e weess .
Figure-20: Ver los cambios en el archivo

Si ingresamos git status de nuevo, veremos que se han rastreado cambios y que simple.py ha sido
modificado.

S git statu

On branch master
our branch is up to date with 'origin/master'.

hanges not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in working directory)

o changes added to commit (use "git add" and/or "git commit -a")
Figure-21: Ver archivos modificados

Ahora agrégalos al area de preparacion

git add -A ]

Ejecuta git status nuevamente

$ git add -
A

$ git statu
s
On branch master
Your branch is up to date with 'origin/master'.

Changes to be committed:
(use "git reset HEAD <file>...

to unstage)

Figure-22: Agregar archivos al 4rea de staging
Ahora vemos que simple.py esta listo para ser confirmado.

Luego escribe el comando commit con un mensaje

%it commit -m “Updated hello function” ]

. $ git commit
-m "Updated hello function”

[master fe@13bb] Updated hello function
1 file changed, 1 insertion(+), 1 deletion(-)

Figure-23: mensaje Commit

Ahora debemos enviar los cambios confirmados al repositorio remoto para que otras personas tengan



acceso a ellos.

Dado que lo comun es que hay varios desarrolladores trabajando en un solo proyecto, primero
tenemos que extraer cualquier cambio que se haya realizado en el repositorio remoto antes de enviar

nuestros cambios para evitar conflictos.

Ejecuta el siguiente comando:

{git pull origin master ]

S git pull o

rigin master
From https://github.com/sanjulamadurapperuma/GitDemoMedium

* branch master -> FETCH_HEAD
Already up to date.

Figure-24: Extraer cambios del repositorio remoto
Como ya estamos actualizados, ahora podemos enviar nuestros cambios al repositorio remoto.

Ahora ejecuta lo siguiente:

[git push origin master ]

$ git push o
rigin master
Username for 'https://github.com': sanjulamadurapperuma
Password for 'https://sanjulamadurapperuma@github.com':
Enumerating objects: 5, done.
Counting objects: 100% (5/5), done.

Compressing objects: 100% (2/2), done.

Writing objects: 100% (3/3), 319 bytes | 319.00 KiB/s, done.

Total 3 (delta 0), reused © (delta 0)

To https://github.com/sanjulamadurapperuma/GitDemoMedium.git
2de7692..fe013bb master -> master

Figure-25: Subir cambios al repositorio remoto

iHemos enviado con éxito nuestros cambios a la rama principal del repositorio remoto!
Creando una rama para una prestacion o problema especifico

Hasta ahora hemos estado trabajando en nuestra rama maestra o principal, pero no es asi como
deberias trabajar en git como desarrollador porque la rama maestra debe ser una version estable del
proyecto en el que estas trabajando. Entonces, para cada prestacion o problema, generalmente es la

norma crear tu propia rama y luego trabajar sobre esa rama.

El comando para crear una nueva rama llamada simple-greeting es el siguiente:

[git branch simple-greeting ]

Ahora si ejecutas



[git branch ]

luego veras todas las ramas del repositorio, y la rama en la que tu estas ubicado se encuentra resaltada
con un asterisco del lado izquierdo

git branc
simple-greeting

$ git branch

simple-greeting

Figure-26: git branch

Si deseas cambiarte a la rama recientemente creada por ti, escribe lo siguiente:

[git checkout simple-greeting J

Ahora, si escribes git branch veras que ahora te encuentras en la rama simple-greeting.
Ahora debemos realizar los cambios en el proyecto. Nos dirigimos al archivo y definimos la funcién

greeting.

simple.py — ~/Documents/GitDemo/RemoteRepository/GitD... - O

Project simple.py
v GitDemoMedium

= gitignore - 1 -~ T s
E] -oitic Welcome, Sanjula!

& simple.py

Figure-27: Definir la funcion de saludo

Ahora repetimos el proceso para confirmar estos cambios:

[git status J




On branch simple-greeting
Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in working directory)

no changes added to commit (use "git add" and/or "git commit -a")

Figure-28: Ver los cambios que no son staged

git add -A

%it commit -m “Greeting Function” }

$ git add -A
- $ git commit
-m "Greeting Function”
[simple-greeting 7a4eb10] Greeting Function
1 file changed, 2 insertions(+)

Figure-29: mensaje Commit para la funcién de saludo

Este commit solo cambiara los archivos en la rama simple-greeting local, no habiendo alterado atin la

rama master local ni el repositorio remoto.
Enviando la rama al repositorio remoto luego de efectuar una confirmaciéon

Ingresa el siguiente comando:

%it push -u origin simple-greeting ]

donde origin es el nombre del respositorio y simple-greeting es la rama que le queremos enviar.

- $ git push -
u origin simple-greeting

Username for 'https://github.com': sanjulamadurapperuma
Password for 'https://sanjulamadurapperuma@github.com':
Enumerating objects: 5, done.

Counting objects: 100% (5/5), done.

Compressing objects: 100% (3/3), done.

Writing objects: 100% (3/3), 349 bytes | 349.00 KiB/s, done.
Total 3 (delta 0), reused © (delta 0)

remote:

remote: Create a pull request for 'simple-greeting' on GitHub by visiting:
remote: https://github.com/sanjulamadurapperuma/GitDemoMedium/pull/new/simpl
e-greeting

remote:
To https://github.com/sanjulamadurapperuma/GitDemoMedium.git

* [new branch] simple-greeting -> simple-greeting
Branch 'simple-greeting' set up to track remote branch 'simple-greeting' from 'or
igin'.
Figure-30: Sube la rama al repositorio remoto




Ahora hemos enviado la rama simple-greeting al repositorio remoto. Si escribes:

[git branch -a }

B
master

-> origin/master

Figure-31: Rama de simple-greeting en el repositorio remoto

Ahora vemos que en nuestro repositorio remoto tenemos la rama simple-greeting. ¢Porqué debemos
enviar la rama al repositorio remoto? Porque en algunas empresas es alli donde ejecutan sus pruebas
unitarias y en otras para asegurarse de que el codigo se ejecute bien antes de fusionarse con la rama

maestra.

Dado que todas la prueban ha sido exitosas (no entraremos en detalles de eso aqui), ahora podemos

fusionar la rama simple-greeting con la rama principal.
Fusionando una rama

Primero, debemos ubicarnos (checkout) en la rama maestra local

[git checkout master ]

ut master

Switched to branch 'master'
Your branch is up to date with 'origin/master’'.

Figure-32: Navegar a la rama master

Extraemos todos los cambios de la rama maestra remota:

[git pull origin master ]

$ git pull o
rigin master
From https://github.com/sanjulamadurapperuma/GitDemoMedium
* branch master -> FETCH_HEAD
Already up to date.

Figure-33: Extraer cambios del repositorio remoto

Ahora veremos todas las ramas que hemos fusionado hasta ahora:

[git branch —-merged ]

$ git branch




Figure-34: Mostrar ramas ligadas
la rama simple-greeting no figurara ya que atin no la hemos fusionado.

Para fusionar simple-greeting con la principal, ingresa:

{git merge simple-greeting ]

(Ten en cuenta que ahora estamos en la rama maestra)

$ git merge

simple-greeting
Updating fe@13bb..7ad4eb10

Fast-forward
simple.py | 2
1 file changed, 2 insertions(+)

Figure-35: Ligar la rama simple-greeting

Ahora que ha sido fusionada, podemos enviar los cambios a la rama maestra del repositorio remoto.

[git push origin master ]

rigin master

Username for 'https://github.com': sanjulamadurapperuma

Password for 'https://sanjulamadurapperuma@github.com':

Total 0 (delta 0), reused © (delta 0)

To https://github.com/sanjulamadurapperuma/GitDemoMedium.git
fe013bb..7a4eb1®0 master -> master

Figure-36: Sube a la rama maestra remota

Ahora los cambios han sido enviados a la rama maestra del repositorio remoto.
Eliminando una rama

Dado que la funcioén o la nueva prestacion ya se ha implementado, podemos eliminar la rama simple-

greeting. Para verificar la fusion realizada en la seccidn anterior, podemos ejecutar:

[git branch --merged ]

$ git branch

--merged
*

simple-greeting

Figure-37: Mostrar ramas ligadas

Si simple-greeting se muestra aqui, eso significa que hemos fusionado todos los cambios y que la

rama ya puede ser descartada.

[git branch -d simple-greeting ]

$ git branch



-d simple-greeting

Deleted branch simple-greeting (was 7a4eb10).
Figure-38: Eliminar rama local simple-greeting

Ahora la rama ha sido eliminada localmente.

Pero como la hemos enviado al repositorio remoto, atin continua ahi. Esto puede ser visto ejecutando:

[git branch -a }

-> origin/master

Figure-39: Mostrar todas las ramas

Para eliminar la rama del repositorio remoto, escribe:

[git push origin --delete simple-greeting ]

- $ git push o

rigin --delete simple-greeting

Username for 'https://github.com': sanjulamadurapperuma

Password for 'https://sanjulamadurapperuma@github.com':

To https://github.com/sanjulamadurapperuma/GitDemoMedium.git
- [deleted] simple-greeting

Figure-40: Eliminar rama remota simple-greeting

Si volvemos a ejecutar

[git branch -a ]

$ git branch

-> origin/master

Figure-41: Mostrar todas las ramas

Podemos ver que la rama ahora a sido eliminada también del repositorio remoto.
iiFelicitaciones!! iAhora eres un maestro en los comandos bésicos pero criticos de Git!
Para referencia o uso de este tutorial, aqui esta el enlace del repositorio publico de GitHub

Traducido del articulo de Sanjula Madurapperuma - The Essential Git Handbook

Aprende a codificar de forma gratuita. El plan de estudios de c6digo abierto de freeCodeCamp ha

ayudado a méas de 40,000 personas a obtener trabajos como desarrolladores. Empezar


https://github.com/sanjulamadurapperuma/GitDemoMedium
https://github.com/sanjulamadurapperuma/GitDemoMedium
https://www.freecodecamp.org/news/author/sanjula/
https://www.freecodecamp.org/news/author/sanjula/
https://www.freecodecamp.org/news/author/sanjula/
https://www.freecodecamp.org/news/the-essential-git-handbook-a1cf77ed11b5/
https://www.freecodecamp.org/news/the-essential-git-handbook-a1cf77ed11b5/
https://www.freecodecamp.org/espanol/learn/
https://www.freecodecamp.org/espanol/learn/

